
A. Hyperparamter Details for Main Results

Hyperparameter Range

optimizer ADAMW
learning-rate, (lr) {0.005, 0.001, 0.0005, 0.0001}

weight-decay, (wd) {0.0001, 0.001}
epochs 100

warmup epochs 10

Table 3. Hyperparameter Range

The hyperparameters and their ranges used in our main
experiments are tabulated in Table 3. In Table 4, we re-
port the original results of Table 1 with optimal number
of prompts per task.When comparing to other prompting
techniques like VPT, we use the official implementation1.
We observe that in many tasks (like SVHN, Patch-Cam.,
Clevr/distance, Kitti/dist., dsprites/orient.), EXPRES out-
performs VPT-deep with significantly fewer prompts.

B. Effect of Hyperparameters

Figure 6. Effect of hyperparameters for Five-Shot Semantic
Segmentation on PASCAL − 50

We study the effect of hyperparameters on various base-
lines and EXPRES used for five-shot segmentation. To
create the validation set for the ith fold, we sample 100
random tasks from the corresponding train-split that con-
sists of fold exclusive categories, {5j |j ̸= i} and eval-
uate the average accuracy over these tasks. For each
baseline method, we test the following learning rates:

1https://github.com/KMnP/vpt

Figure 7. Five-Shot Predictions on PASCAL − 5i

{0.0001, 0.0005, 0.001, 0.005}. For prompt based meth-
ods, we fix the weight decay to 0.0001 and test following
number of prompts: {5, 10, 20}. For rest of the methods
(non-prompt-based), we vary the weight decay in the set,
{0.001, 0.0001}. In Figure 6, ADAMW is chosen as the
optimizer and fold-50 as the fold for analysis. For other hy-
perparameters like number of epochs and warmup epochs,
fixed values of 100 and 10 respectively worked well. We
use the above hyperparameters validation to pick the op-
timal values for final evaluation. In Figure 7, we visualize
the predictions for EXPRES and compare it to various base-
lines. EXPRES tends to produce more complete segmenta-
tion masks than others across different folds.

C. Additional Ablations on VTAB-1k
We demonstrate the importance of prompt propagation
and residual prompts on additional tasks (DTD and Clevr-
Count) from the VTAB-1k benchmark. In all ablations, we
use optimal learning rates and weight decays with M = 15
for DTD task and M = 10 for Clevr-Count task. In Figure
8, we repeat the ablation of propagating shallow prompts
without residual prompting for additional datasets. We ob-
serve similar trends as in Figure 3- downstream perfor-

https://github.com/KMnP/vpt
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VPT-shallow 77.7 86.9 62.6 97.5 87.3 74.5 51.2 76.81 78.2 92.0 75.6 72.9 79.66 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 46.98
num. prompts (M ) 100 5 1 200 50 200 1 79.4 5 50 50 10 28.7 100 200 100 100 100 100 200 200 137.5

VPT-deep 78.8 90.8 65.8 98.0 88.3 78.1 49.6 78.48 81.8 96.1 83.4 68.4 82.43 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 54.98
num. prompts (M ) 10 10 10 1 1 50 5 12.4 100 100 10 1 52.8 50 200 100 50 10 50 200 200 107.5

EXPRES (ours) 78.0 89.6 68.8 98.7 88.9 81.9 51.9 79.7 84.8 96.2 80.9 74.2 84.0 66.5 60.4 46.5 77.6 78.0 49.5 26.1 35.3 55.0
num. prompts (M ) 30 10 15 10 5 10 10 12.9 30 10 10 10 15.0 100 10 10 10 30 30 10 30 28.75

Table 4. Extended VTAB-1k results: Comparing EXPRES with VPT-shallow and VPT-deep (VPT) with optimal number of prompts per
VTAB-1k task. The highest accuracies are highlighted per task.

Figure 8. Prompt propagation (additional ablations): Ef-
fect of propagating prompts with modulation upto a layer, l =
{2, . . . , 12} of the ViT-B/16 encoder with total 12 layers. The
datasets are sampled from the VTAB-1k benchmark.

mance depends directly on the extent of prompt propagation
with modulation i.e., interaction with other tokens via self-
attention. We also observe that for Clevr-Count, the per-
formance quickly rises upto layer 4, then plateaus. Thus,
the exact performance trend with increasing propagation
through the layers varies slightly with the downstream task.
In Figure 9, we repeat the ablation that delineates the impor-
tance of each type of residual prompt for additional datasets.
We observe that trends are similar to Figure 4. Within each
block (Att and MLP), layer norm residual prompts yield no-
table improvements in most tasks. Within MSA block (Att),
the QKV prompts are dominant over Proj prompts for natu-
ral tasks (DTD, svhn) of VTAB-1k while the trend reverses
for structured tasks (Clevr-Dist, Clevr-Count). Most impor-
tantly, when comparing blockwise performance, prompting
the MSA block (Att) consistently outperforms prompting
the MLP block (MLP), reinforcing the conclusions in §4.3.

D. Effect of Prompt Initiation Layer
One of the key design decisions of EXPRES prompting is
where to insert the prompts. In Fig. 10 we show that initiat-
ing EXPRES prompting at early layers is generally a good

strategy. Combined with the observations in 3, we recom-
mend using prompts at every layer to ensure best perfor-
mance.

E. Effect of Architectural Choice

Linear MLP-3 Partial-1 Biastune VPT VPT-shallow EXPRES

VTAB-Specialized 80.8 75.2 81.7 80.1 84.5 82.5 84.6

Table 5. Comparing various methods for adapting Swin-Base
model pretrained on ImageNet-21k

EXPRES was designed as a generic prompting technique
for Transformer architectures. To demonstrate it’s gener-
ality, we compare our method with other adaptation tech-
niques with Swin [51] transformers as the backbone. In
particular, we incorporate EXPRES prompts in Swin-Base
architecture, where fixed number (10) of shallow prompts
are propagated through all four stages without any modi-
fication during patch merging with residual prompts being
added at each layer of the SwinTF-blocks. Evaluations on a
subset of the VTAB-1k dataset in Table 5 shows that over-
all our method outperforms various baselines and state-of-
the-art methods even when applied to a different variant of
transformer architecure.

F. FGVC results

In Table 6, we compare the performance of our approach
to adaptation baselines and other prompting techniques on
the FGVC benchmark. On four datasets our method outper-
forms most baselines and performs competitively with other
prompting techniques.



Figure 9. Residual Prompt Types (additional ablations): Evaluating the importance of different type of residual prompts on VTAB-1k
datasets.

Figure 10. Starting EXPRES prompting at specific layers:
l1 → l2 means prompting starts at l1 (closer to input) and ends
at l2. number of prompts is fixed at 10.

G. Additional Discussion on Performance-Cost
Tradeoff

In Figure 11, we compare the computational efficiency of
our EXPRES with VPT on additional VTAB-1k datasets.
We fix the learning rate and weight decay for EXPRES at
lr = 0.01, wd = 0.0001 and for VPT at the optimal values
from [32]. Rest all hyperparameters like batch size, epochs
and warmup epochs are left unchanged. We observe trends
similar to Figure 5, where for a given accuracy specifica-
tion, the difference between number of prompts required for
EXPRES and VPT can be upto an order (e.g., clevr-count in
Figure 11).

Cub Flower Dogs Cars

FULL 87.3 98.8 89.4 84.5
LINEAR 85.3 97.9 86.2 51.3

PARTIAL-1 85.6 98.2 85.5 66.2
MLP-3 85.1 97.9 84.9 53.8

SIDETUNE 84.7 96.9 85.8 48.6
BIAS 88.4 98.8 91.2 79.4

VPT-shallow 86.7 98.4 90.7 68.7
VPT 88.5 99.0 90.2 83.6

EXPRES (ours) 88.3 99.0 90.0 80.5

Table 6. FGVC benchmark: Per task adaptation results with ViT-
B/16 model.

Figure 11. Additional Computational Efficiency of EXPRES
Comparing Accuracy vs Number of Prompts for VPT and EX-
PRES

In Table 7, we compare the computational as well as mem-
ory cost of various adaptation techniques. The computa-
tional cost is reported in terms of GMACs and memory cost
in terms of tuned parameters relative to full model param-
eters. We observe that with 100 prompts, our EXPRES re-
quires memory (4.7M params.) that is comparable to VPT
(1M params.) and orders of magnitude less than finetun-
ing (∼ 86M params.). While the computational cost of our
method (26.9 GMACs) is slightly more than Linear (17.5
GMACs) and VPT (19.9 GMACs) when using large num-



Tuned Params (%) GMACs

FT-all 100.0 17.47
Linear 0.090 17.47

VPT-shallow (M=1) 0.091 17.56
VPT-shallow (M=100) 0.179 26.87

VPT (M=1) 0.100 17.50
VPT (M=100) 1.166 19.96

EXPRES (M=1) 0.144 17.56
EXPRES (M=100) 5.560 26.87

Table 7. Memory and computational cost analysis using a ViT-
B/16 pre-trained on supervised ImageNet-21k. We consider in-
put resolution of 224× 224× 3 and a 100-way classification task.
Tuned parameters are reported as a percentage of the parameters in
the backbone model (including classifier head). Here, M is num-
ber of prompts per layer.

ber (100) of prompts, our method greatly outperforms Lin-
ear (Table 1) and achieves better optimal performance than
VPT with far fewer prompts (Figure 5 and Figure 11), pro-
viding good performance-cost tradeoffs.

H. Ablations for Semantic Segmentation

Q K MLP

Accuracies 44.39 51.61 38.25

Table 8. Ablation: Effect of various representations for five-shot
semantic segmentation on PASCAL − 50

We evaluate various ways of the extracting dense repre-
sentations from transformer backbone for five-shot seman-
tic segmentation. In Table 8, we compare last-layer keys
(K), queries (Q) and MLP-block(MLP ) outputs. We use a
learning rate of 0.005, weight decay of 0.0001, 5 prompts
and average the accuracies over 100 tasks randomly sam-
pled from the train-split of PASCAL − 50. We observe that
keys (K) are the most effective representations for seman-
tic segmentation, so we use them in all our segmentation
experiments.

I. Interpretability of Learnt Prompts
In Figure 12, we provide visualizations to demonstrate that
residual prompts learn semantic information and facilitate
fine-grained layerwise modulation of the attention. Here, an
arbitrarily chosen but fixed prompt location is used for visu-
alization purposes. We observe that residual prompts learn
spatially fine-grained details that are diverse across layers
and that removing them reduces the diversity of the atten-
tion maps across layers, confirming our hypothesis.

Figure 12. EXPRES prompt attention at different layers: We
display input image (top-row), the attention maps of a trained EX-
PRES prompt (middle-row), and the attention map of the same
prompt without residuals (bottom-row) evaluated at different lay-
ers. Attention maps for this prompt from early (close to input) to
later (close to output) layers are arranged from left to right in each
row.
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