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In this supplementary material, we provide additional ex-
perimental results and technical details that were omitted in
the main paper due to space constraints.

• Section 1: Additional details

– Classwise result on GTA5→Cityscapes and
Synthia→Cityscapes, Tab. 1 main paper

– Annotation cost vs performance plot for
Synthia→Cityscapes, Fig. 3 main paper

– Boundary loss (L2
boundary, Sec. 3.1, main paper)

– Image loss (L2
image, Sec. 3.4, main paper)

– Hyerparameters for our framework

– Algorithm for our framework

– Visualisation of features

• Section 2: More qualitative results

1. Additional details
1.1. Classwise result on GTA5→Cityscapes and

Synthia→Cityscapes

In this experiment, we perform two comparisons. First,
we compare classwise mIoU for our framework for each
weak label with prior works(WeakSegDA [6], coarse-
to-fine [1]). Second, we compare our framework’s
performance with UDASS SoTA methods(CorDA [10],
ProDA [11], DASS [4]). We report the results for
GTA5→Cityscapes in Tab. 1 and for Synthia→Cityscapes
in Tab. 2.

For the first comparison, our framework consistently
outperforms prior works for most of the classes for both
GTA5→Cityscapes and Synthia→cityscapes. Notably, for
tail distribution classes like train, truck, bus and traf-
fic light we see significant improvement. For e.g., we
see an improvement of 26.4, 40 and 16.8 mIoU for

*Currently with Google. This work was done at ETH Zürich.

train class for image, point and coarse labels respec-
tively, in GTA5→Cityscapes setting. Similarly for traf-
fic light, we see an improvement of 25.2, 11.6 and 12.1
mIoU for image, point and coarse labels respectively for
Synthia→Cityscapes setting. This improvement for tail
classes shows the advantage of using our framework for tail
distribution classes, that are difficult to predict.

For second comparison, overall our framework with
additional weak labels outperforms UDASS for most of
classes. We specifically point out the performance of class
‘train’. For UDASS, due to big domain gap between GTA5
train and Cityscapes ‘train’, the performance is bad, eg. 1.0
mIoU ProDA [11] and 4.4 for DASS [4]. With additional
weak labels from target domain, we significantly improve
over UDASS by achieving 60.8 mIoU with just image label,
63.2 with point label and 68.3 mIoU for coarse labels. We
see similar improvements for fence in Synthia→Cityscapes
setting. These results show the importance of using addi-
tional cheaper weak labels for improving the performance
over UDASS task.
Annotation cost vs performance plot for
Synthia→Cityscapes In this experiment, we extend
the results from Sec. 4.2 from the main paper by showing
additional results from Synthia→Cityscapes. We show
the cost effectiveness of different weak labels for WDASS
task. We first compare the performance within different
weak labels(eg. image, point and coarse labels). Similar
to GTA5→Cityscapes setting, we observe that Ours-Point
outperform other weak labels suggesting it to be more
suited for lower budget settings. Next, we compare our
weak label performance with supervised baselines (only
source, supervised). For all weak labels, our framework
outperforms supervised baselines. Further, with only
8% budget (347 vs 4463 hrs) our framework with coarse
annotation bridges the gap with supervised learning with
a gap of only 2.9% mIoU. Overall, we show that weak
labels are cost-effective alternative that achieve competitive
performances compared to fine labels.
Boundary loss, Sec.3.1 main paper Coarse labels do not
have labeled boundaries. This becomes severe with point
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GTA5 → Cityscapes
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mIoU gap
Source 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6 +30.8

U
D

A

CorDA [10] 94.7 63.1 87.6 30.7 40.6 40.2 47.8 51.6 87.6 47.0 89.7 66.7 35.9 90.2 48.9 57.5 0.0 39.8 56.0 56.6 +10.8
ProDA [11] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5 +9.9
DASS [4] 93.5 60.2 88.1 31.1 37.0 41.9 54.7 37.8 89.9 45.5 89.9 72.7 38.2 90.7 34.3 53.2 4.4 47.2 58.5 57.1 +10.3

im
ag

e baseline 82.9 35.9 80.9 30.5 32.2 39.9 48.2 45 86.6 41 84 66.3 21.8 86.8 45.9 48.4 10.8 43.7 45.7 51.4 +16.0
WeakSegDA [6] 89.5 54.1 83.2 31.7 34.2 37.1 43.2 39.1 85.1 39.6 85.9 61.3 34.1 82.3 42.3 51.9 34.4 33.1 45.4 53.0 +14.4

Ours 91.9 51.2 87.6 41.2 41 47.1 55.7 47.8 89.6 42.7 89.2 70.8 35.5 90.1 59.8 71.9 60.8 46.8 47.3 61.5 +5.9

po
in

t baseline 81.9 40.7 85 32.9 37.1 46.2 51.1 55.7 86 41.9 82.5 68.2 42.4 89 46.7 45.7 20.9 35.8 53.6 54.9 +12.9
WeakSegDA [6] 94.0 62.7 86.3 36.5 32.8 38.4 44.9 51.0 86.1 43.4 87.7 66.4 36.5 87.9 44.1 58.8 23.2 35.6 55.9 56.4 +11.0

Ours 95.5 71.3 87.6 43.3 43.3 47.7 51.3 58.7 87.0 45.5 86.4 73.6 49 91.4 56.7 65.2 63.2 46.8 67.0 64.7 +2.7

co
ar

se baseline 93.5 63.2 86.4 45.4 38.1 47.1 52 48.6 87.8 46.2 89.3 71.2 40.7 89.9 56.4 61.3 40.5 46.7 51.3 60.8 +6.6
Coarse-to-fine [1] 96.4 75.1 89.9 51.6 47.3 49.6 53.7 62.2 89.5 45.2 91.0 71.4 46.4 92.2 69.6 72.9 51.5 51.1 61.7 66.7 +0.7

Ours 95.5 71 89.2 49.3 51.7 52.0 60.0 64.2 89.8 51.4 91.5 73.8 46.5 91.5 69.4 75.3 68.3 55.0 68.4 69.1 -1.7
Supervised 97.1 78.1 89.2 44.3 46.5 49.2 46.8 63.1 90.2 52.9 92.0 73.3 49.0 91.9 67.4 71.9 59.1 49.1 69.4 67.4 0.0

Table 1. Comparison results on GTA→Cityscapes. We report per-class IoU as well as overall mean IoU(mIoU). We show two comparisons,
first, domain adaptation with no labels from target domain(UDA) vs domain adaptation with weak labels(image, point, coarse) from target
domain. Second, comparison of our method(ours) with the baseline and existing methods(WeakSegDA [6], Coarse-to-fine) for each weak
label. gap: performance gap for mIoU scores wrt to supervised setting. Lower value of gap is better. ‘baseline’: segmentation network
trained on source labels and target weak labels.

Synthia → Cityscapes
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mIoU mIoU* gap
Source 64.3 21.3 73.1 2.4 1.1 31.4 7.0 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 38.9 34.9 40.3 +33.6

U
D

A

CorDA [10] 93.3 61.6 85.3 19.6 5.1 37.8 36.6 42.8 84.9 90.4 69.7 41.8 85.6 38.4 32.6 53.9 55.0 62.8 +11.1
ProDA [11] 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 62.0 +11.9
DASS [4] 83.8 42.2 85.3 16.4 5.7 43.1 48.3 30.2 89.3 92.1 68.2 43.1 89.7 47.2 42.2 54.2 55.6 62.9 +11.0

im
ag

e baseline 83.6 34.1 74.7 22.1 9.5 37.8 41.4 41.4 62.2 32.3 2.0 32.8 69.4 32.6 0 1.8 36.1 39.1 +34.8
WeakSegDA [6] 92.3 51.9 81.9 21.1 1.1 26.6 22.0 24.8 81.7 87.0 63.1 33.3 83.6 50.7 33.5 54.7 50.6 58.5 +15.4

Ours 90.1 42.7 85.6 29.6 24.5 46.3 47.2 51.2 87.6 88.8 70.6 34.9 84.3 45.8 38.2 64.3 61.3 63.9 +10.0

po
in

t baseline 88.8 55.8 75.4 29.2 14.3 40 35.6 43.5 55.3 60.5 45.9 39 74.6 34.9 26.6 56.8 48.5 53.3 +20.6
WeakSegDA [6] 94.9 63.2 85.0 27.3 24.2 34.9 37.3 50.8 84.4 88.2 60.6 36.3 86.4 43.2 36.5 61.3 57.2 63.7 +10.2

Ours 95.4 68.7 85.4 37.5 29.3 44.0 48.9 56.4 86.8 86.8 70.6 47.1 89.7 50.8 41.1 65.8 62.8 68.7 5.2

co
ar

se baseline 92.7 57.9 81.6 32.5 27.3 43.4 40.0 43.0 81.1 85.8 47.4 38.6 80.3 46.2 22.8 51.5 54.6 59.1 +14.8
Coarse-to-fine [1] 95.5 69.9 87.3 38.4 29.7 44.9 40.1 53.7 87.0 90.3 70.9 39.9 87.8 53.6 35.4 61.6 61.6 67.2 +6.7

Ours 93.4 68.6 87.4 42.9 39.1 50.7 52.7 64.8 87.9 77.3 73.1 42.1 89.3 70.7 46.8 68.7 66.0 71.0 +2.9
Supervised 97.1 78.1 89.2 44.3 46.5 49.2 46.8 63.1 90.2 92.0 73.3 49.0 91.9 71.9 49.1 69.4 68.8 73.9 0.0

Table 2. Comparison results on Synthia→Cityscapes. We report per-class IoU as well as mean IoU for 16 classes(mIoU) and 13
classes(mIoU*) excluding * marked classes. We show two comparisons, namely 1) domain adaptation with no labels from target do-
main(UDA) vs domain adaptation with weak labels(image, point, coarse) from target domain. 2) Comparison of our method(ours) with
baseline and existing methods(WeakSegDA [6]) for each weak label. gap: performance gap for mIoU scores wrt to supervised setting.
Lower value of gap is better. ‘baseline’: segmentation network trained on source labels and target weak labels.



Source only Image Point Coarse

Figure 1. We show TSNE visualisation of pixel features for different weak labels(e.g. image, point and coarse labels) obtained from
trained network via our framework. We also show features for ‘source-only’ which is features obtained by segmentation network trained
only on source domain. We observe that features from our framework for WDASS forms better compact clusters than ‘source-only’.
Further our framework with point and coarse label training generate features that are more compact than with image label training. Setting:
GTA5→Cityscapes; We randomly sample an image from Cityscapes validation set and generate its pixel features following different
settings (e.g. source only, image, point etc)

labels where only one pixel is labeled per class in an im-
age and with image label where no label is labeled. [1]
shows that we can learn boundaries from source domain
with labeled boundaries. We extend [1] for point and
image labels and observe that it is also helpful for these
weak labels(see Tab.2 main paper). We obtain the bound-
ary loss(Lboundary) by matching the ground truth bound-
ary and prediction boundary for source domain. Let ys be
the ground truth label mask from source domain and ŷs be
the corresponding predicted label. We obtain the bound-
ary by computing the gradient of the labels. Specifically
for ground truth boundary (ΓGT ) and prediction boundary
(Γpred) we compute boundary as :

ΓGT = ||∇ys||2; Γpred = ||∇ŷs||2 (1)

where ∇ is the gradient operator, which estimates gradient
at each pixel by taking the central difference of label val-
ues for the pixel. Since ŷs is not differentiable, we estimate
ŷs with Gumbel Softmax trick [3] making it differentiable.
Further, from the boundary values from ΓGT and Γpred,
we select representative boundary pixels (p+GT for ground
truth boundary pixels and p+pred for segmentation prediction
boundary pixels) by thresholding them (threshold=1e−8),
i.e. p+GT are pixels where ΓGT > 1e−8 and p+pred are pixels
with Γpred > 1e−8. We define boundary loss Lboundary as,

Lboundary = λ1|Γpred(p
+
GT )− ΓGT (p

+
GT )|

+λ2|Γpred(p
+
pred)− ΓGT (p

+
pred)|

(2)

Following [7] we set λ1 and λ2 as 0.5. This boundary
loss is only applied on source domain as it has fine boundary
details.
Image loss, Sec. 3.4, main paper We apply image loss
at the classification logits of the network as explained in
Sec. 3.4 of the main paper (Eq. 12) following [6]. First
we obtain image level probability for a class k, pkt using

pixelwise class logit scores m(i,k) :

pkt = σ(log
1

N

N∑
i

exp m(i,k)) (3)

As discussed in the main paper (Sec.3.2), this LogSumExp
expression estimates smooth maximum over the logits, rep-
resenting most activated pixel in the class map. With the
image level class prediction probability pkt and image labels
ykt , we obtain the image label loss (L2

image) using

L1
image =

K∑
k=1

−ykt log(p
k
t )− (1− ykt )log(1− pkt ) (4)

This image loss penalizes predictions of classes not
present in the image and improves predictions for classes
present in an image, thus overall improving performance.
Algorithm for our framework We show the summary of
training procedure for our framework via ??. Our frame-
work has two key components, namely, Weak Label Guided
Prototype Learning and Prototype based Contrastive Learn-
ing. For detailed information about the components, please
see the main paper (Sec. 3.2 and 3.3).
Hyperparameters and implementation details for our
framework Following previous works [6, 9, 11] we resize
the image for training. For Cityscapes we resize the images
to 512x1024 resolution, whereas for GTA5, we resize the
image to 720x1280 resolution. We perform no resizing to
Synthia images and use its original image size. For training
we set the batch size to 4. We perform standard data aug-
mentations for training. Specifically, we perform random
resize with scale factor between [0.5,2] and random flip.
Further, we set the crop size for training as 512x512 [6,11].
Following [1,2,8], we also perform cross domain augmen-
tations with every target image during training, where we
cut paste pseudo labeled class mask [5] from target domain
to real images. We set the pseudo label confidence threshold



Algorithm 1: Our framework for Weakly supervised Domain Adaptive Semantic Segmentation task
Input: Source data : (xs, ys)

ns
j=1, Target data : (xt, yt)

nt
j=1, where yt ∈ {image, point, coarse} labels; student network, gθ , pretrained on source

dataset, teacher network, hϕ; n iterations: 150000; nb: batch-size; τ = 1
Initialise: ϕ = θ // teacher weight initialised as student weight

1 for j ← 0 to n iterations do
2 Get source data (xs, ys)

nb
n=1, target data (xt, yt)

nb
n=1

3

/* Compute prototypes following Sec. 3.2 */

4 Get pixel features for source and target, f i
s, f i

t

5 Compute weight of features as similarity wrt anchor(w(i,k)),
6 Compute class prototype ηkt as weighted average of features using weight w(i,k), Eq. 3, main paper
7 Correct features using image loss L1image, Eq. 6 main paper
8

/* perform contrastive alignment, loss Ltintra, Lsintra, Linter */
9 Compute intra domain alignment loss Lsintra for source, Eq. 7, main paper

10 Compute intra domain alignment loss Ltintra for target, Eq. 7, paper
11 Lintra = Ltintra + Lsintra
12 Compute inter domain alignment loss Linter for source to target alignment, Eq. 9, main paper
13 Lcontrast = 0.5Lintra + 0.5Linter

14

15 Compute Lbase (Eq. 11), Lboundary (Eq. 2 supplement), Limage Eq. 12 main paper
16

17 Train gθ with Lbase, Lcontrast, Limage and Lboundary as in Eq. 13 Sec. 3.4
18

19 ϕ = αϕ+ (1− α)θ // update teacher weight

20 end
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Figure 2. Annotation cost vs. performance. 1. Comparison of
WDASS (point, image, coarse) vs. fully supervised training on
the source (only source) and target (supervised). 2. Comparison
within weakly supervised domain adaptation for various weak la-
bels (Point, Image, Coarse labels). Results reported in mIoU for
13 classes for Synthia.

as 0.96 as in prior works. For training, we use SGD opti-
miser with poly learning rate scheduler having initial learn-
ing rate of 2.5x10e−4. We set momentum of 0.9 and weight
decay of 0.0001 and training for 150000 iterations. We per-
form multiscale evaluation, where we average the logits for
different scales for an image. Specifically, we perform scal-

ing with a factor of {0.5,1,2}. We make predictions using
the averaged logits.
Visualisation of features We provide TSNE based feature
visualisation for our pixel features in Fig. 1. We observe
that features obtained for ‘source only’ setting, i.e. network
trained only on source data are not properly separable for
different classes. Our framework using additional weak la-
bels (e.g. image, point and coarse labels) for WDASS task
improves the feature representation by forming compact
and separable feature representations for different classes.
Further our framework trained with coarse and point weak
labels generate more compact features than with image la-
bel training.

2. Qualitative Results

We perform qualitative comparison of our framework
with prior works for GTA5→Cityscapes in Fig. 3 and for
Synthia→Cityscapes in Fig. 4. For both settings our frame-
work predicts better than the prior works. Particularly,
for image based weak labels, our framework performs ex-
ceptionally well compared to baseline (weakSegDA [6]).
For example, in Fig. 3, row 3, class ‘bus’ is not even
predicted by baseline, whereas our framework predicts
‘bus’ better. We observe similar findings with the diffi-
cult Synthia→Cityscapes setting as well, see Fig. 4. The
segmentation quality is best for coarse annotation, owing
to availability of more labeled pixels from target domain.
Further, even with just one labeled pixel per class for point



label, our framework performs quite well in comparison to
coarse annotation, see prediction of ‘bicycle’ in row 1 and
‘train’ in row 2 of Fig. 3. To summarise, our framework
utilising additional cheap weak labels outperforms previous
prior works and works best with coarse annotation.
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Figure 3. Qualitative results on GTA5→Cityscapes setting. On the left column we show the image and ground truth, whereas on right we
compare our frameworks results with prior works. For image and point label we compare our framework performance with [6], whereas for
coarse label, we compare with [1]. We present three different comparisons. In first row, we show our framework is makes better prediction
for motorbike as well as bicycle class. For second row, we compare the the performance of class train, whereas for the last row, we show
performance of class ‘bus’. Overall, our framework segments the classes better than the prior works for all weak labels. Please note that
for better visualisation, we crop the region of interest from full image. Region of interest in white bounding boxes.
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Figure 4. Qualitative results on Synthia→Cityscapes setting. On the left column we show the image and ground truth, whereas on right we
compare our frameworks results with prior works. For image label we compare our framework performance with [6], whereas for coarse
label, we compare with [1]. For point label we compare with baseline as in Tab. 1 main paper. We present three different comparisons.
In first row, we show our framework is makes better prediction for bus class. For second row, we compare the the performance of class
motorbike. Finally for the last row, we show the performance class ’person’. Overall, our framework segments the classes better than the
prior works for all weak labels. Please note that for better visualisation, we crop the region of interest from full image. Region of interest
in white bounding boxes.
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