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1. Finite Difference Model - Performance

Figure 10 demonstrates the performance of our inverse
Finite Difference algorithm for recovery of diffusivity k£ and
absorption coefficient €. We show images at intermediate
time-steps, one while the material gets heated (Figure 10(a))
and another image while it is cooling off after the source
is turned off (Figure 10(b)). We also show our simulation
setup in Fig. 11.

2. Advantages over spectral methods

For the PVC readings, we painted one of the faces with a
highlighter (refer Figure 12(a)) and tried our approach and
it still worked quite well (refer to Fig. 7(b) of the main
paper, where the classification accuracy is 100% for PVC).
This proves that small surface manipulations do not hinder
our approach - unlike other spectral or RGB-image based
methods.

3. Tuning the hyper-parameter of learning rate

Despite having automated everything else in our code,
there is still one hyper-parameter that needs tuning in our
setup - the learning rate for the optimization. We need to
adjust the learning rate so that the optimization - (a) does not
get stuck in a local minima and (b) does not wildly oscillate
and hence not converge. Currently we do this manually by
looking at the loss and diffusivity convergence curves but
this process can be optimized as shown by previous work

(1]

4. Special case - metals

We tried our approach on metals but it didn’t work right
off the bat because of two reasons - (1) The reflectivity of
metals is too high and their emissivity is quite low. This
means, it reflects most of the light we shine on it and what-
ever small fraction is absorbed and leads to a minor temper-
ature change, is not visible because only a fraction of that
reaches camera (because of low emissivity) (2) The diffu-
sivity of metals is very high. Combined with it’s high re-
flectivity and low emissivity, we need a much higher power
laser compared to the one we use currently (60mW).

Workaround: We tested another method to still get
some classification means for metals for the low powered
laser. We pasted a tape on top of the metal cubes. This gives
us the advantage of low reflectivity and higher emissivity.
Thus, we might get absorption properties of the tape but
the diffusivity for the metal can be obtained in this method.
Please find the setup in Figure 12(b). The confusion matrix
obtained upon classification for these metal cubes is shown
in Figure 14.

5. Two layers - going under the surface

We performed simulations to test out our hypothesis of
using this approach to find properties of under-the-surface
materials. We created a heat diffusion simulation using our
forward FD model, where the surface layer with a thick-
ness of 0.5mm, has a diffusivity of 1=7 ¢/m?/s. The layer
below it has a diffusivity of 277 ¢/m?/s. We assume the
thickness of top layer as a known parameter for this op-
timization. After running our optimization algorithm for
recovering 2 layer properties, we got a diffusivity for top
layer as 0.995~7 ¢/m?/s and a value of 2.002=7 ¢'m?/s
for the bottom layer (refer Figure 15). These values match
very closely with the original values which makes it a good
direction to work on in the future.

6. Varying capture time ¢,y

Apart from the results shown in the paper, we also tried
various smaller capture times for our setup. The TSFs are
similar for the materials for all the ton’s (refer Fig. 13). We
found that our approach resulted in similar results for a total
capture duration of 20s or higher. While this duration can
be further reduced with implicit approaches such as PINN,
the physical process of heat dissipation requires a minimum
duration, which often tends to be several tens of seconds.
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Figure 10. Finite Difference Performance. (a) While the source is still on: (Left) Images obtained at time-step = 104, from FD method
after optimization (Bottom row is the zoomed-in version of top row) (Right) Original images captured from the thermal camera. (b) After
source is switched off: Similar comparison of FD result and original captured image at time-step = 158. (c) The resultant diffusivity (k)
image obtained after the optimization is complete, (left) original image (right) zoomed-in version (d) The resultant absorption coefficient
(¢') image (left) original image (right) zoomed-in version. The results displayed are for Oakwood, average MSE error over the set of
images is 8.68 73 .
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Figure 11. Ansys Fluent FEM Analysis software. (a) We give

a custom heat injection on the surface of the material for few sec-

onds and then turn it off. (b) We observe the surface temperature Figure 12. Metals Taped. (a) We painted a PVC block with

variation and do our analysis based on only surface temperatures a green highlighter and tried the same approach and our algo-

which is what would be available to us during real measurements. rithm correctly classifies the material. (b) We pasted a Scotch
blue paper-tape on top of the metals - (left-to-right) Stainless Steel,
Copper and Brass.
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Figure 13. TSFs for various scan durations. TSFs plotted for Oakwood, Rosewood, PVC, and Sandpaper for time durations (a) 4s, (b)
10s, (c) 20s
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Figure 15. Recovering properties of hidden material. (Top) Re-
Brass Copper  Stainless Steel covered properties of the top layer - absorption coefficient €', ther-
Predicted Class mal diffusivity £ and its zoomed-in version. (Bottom) Two-layered
material, and properties of the bottom layer - thermal diffusivity k&
Figure 14. Confusion Matrix for metals. We perform leave- and its zoomed-in version.

one-out validation to gauge the accuracy of our classification using
TSE.
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