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In this appendix we first provide more details about our
networks and their architectures in Sec. 1.

In Sec. 2 we expand on the choice and formulations of
some loss terms we use. Importantly, in Sec. 2.4 we explain
the physics-based refinement procedure used in the main
paper, and show that modelling garments as open surfaces
is necessary for it.

Then in Sec. 3 we report additional quantitative and qual-
itative results of our pipeline and the runtime of its compo-
nents. Finally, in Sec. 4 we describe how human ratings
were collected.
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1. Network Architectures and Training

1.1. Garment Generative Network

1.1.1 Garment Encoder

To encode a given garment into a compact latent code, we
first sample P points from its surface and then we feed them
to a DGCNN [23] encoder, detailed in Fig. 11. The input
point cloud is processed by four edge convolution layers,
which project the input 3D points into features with increas-
ing dimensionality – i.e., 64, 64, 128 and finally 256.

Each edge convolution layer works as follows. For each
input point, the features from itsK neighbours are collected
and used to prepare a matrix with K rows. Each row is
the concatenation of two vectors: fi − f0 and f0, fi and f0
being respectively the feature vector of the i-th neighbour
and the feature vector of the considered point. Each row
of the resulting matrix is then transformed independently
to the desired output dimension. The output feature vector
for the considered point is finally obtained by applying max
pooling along the rows of the produced matrix.

The original DGCNN implementation recomputes the
neighborhoods in each edge convolution layer, using the
distance between the feature vectors as metric. This can be
explained by the original purposes of DGCNN, i.e., point
cloud classification and part segmentation. Since we are in-
terested in encoding the geometric details of the input point
cloud, we compute neighborhoods only once based on the
euclidean distance of the points in the 3D space and reuse
this information in every edge convolution layer. We set
K = 16 in our experiments.

The feature vectors from the four edge convolutions are
then concatenated to form a single vector with 512 ele-
ments, that is fed to a final linear layer paired with batch
normalization and leaky ReLU. Such layer projects the 512
sized vectors into the final desired dimension, which is 32 in
our case. The final latent code is obtained by compressing
the feature matrix with shape P × 32 along the first dimen-
sion with max pooling.
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Figure 11. DGCNN point cloud encoder. We adopt DGCNN [23] as the point cloud encoder of our garment generative network. The
input cloud is passed through four edge convolutions, which gather features of local neighborhoods of points to project them into higher
dimensional spaces. The features from all the layers are then concatenated and projected to the final desired dimension. Max pooling
is finally used to obtain the latent code z for the input cloud. CONCAT stands for features concatenation, while LIN + BN + LRELU
represents a linear layer followed by batch normalization and leaky ReLU.
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Figure 12. UDF decoder. Given a 3D query and a garment latent code, the decoder of our garment generative network is trained to predict
the UDF of the input query w.r.t. the surface of the garment. The latent code is used to condition the prediction by the means of Conditional
Batch Normalization (CBN) [22]. Since we trained the decoder with the binary cross-entropy loss, its outputs need to be converted to UDF
values by applying the sigmoid function and then scaling the result with the UDF clipping distance δ.
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1.1.2 Garment Decoder

The garment generative network features an implicit de-
coder that can predict the unsigned distance field of a gar-
ment starting from its latent code. More specifically, the
decoder is a coordinate-based MLP that takes as inputs the
garment latent code and a 3D query. Using the latent code as
condition, the decoder predicts the unsigned distance from
the query to the garment surface.

Our UDF decoder, shown in Fig. 12, is inspired by [11].
The input 3D query is first mapped to a higher dimensional
space (R63) with the positional encoding proposed in [12],
which is known to improve the capability of the network to
approximate high frequency functions. The encoded query
is then mapped with a linear layer to R512 and then goes
through 5 residual blocks. The output of each block is com-
puted as fout = fin + ∆f , where fin is the input vector and
∆f is a residual term predicted by two consecutive linear
layers starting from fin. The size of the feature vector is
512 across the whole sequence of residual blocks. The out-
put of the last block is mapped to the scalar output out ∈ R
with a final linear layer.

All the linear layers but the output one are paired with
Conditional Batch Normalization (CBN) [22] and ReLU ac-
tivation function. CBN is used to condition the MLP with
the input latent code z. In more details, each CBN mod-
ule applies standard batch normalization [7] to the input
vectors, with the difference that the parameters of the fi-
nal affine transformation are not learned during the training
but are instead predicted at each inference step by dedicated
linear layers starting from z.

Finally, recall that our generative network is trained with
the binary cross-entropy loss. Thus, the output of the de-
coder must be converted to the corresponding UDF value
by first applying the sigmoid function and then scaling the
result with the UDF clipping distance δ, which we set to 0.1
in our experiments. Such procedure is indeed the dual of the
one applied on the UDF ground-truth labels during training
to normalize them in the range [0, 1].

1.1.3 Surface Sampling

We sample supervision points with a probability inversely
proportional to the distance to the surface: 30% of the points
are sampled directly on the input surface, 30% are sampled
by adding gaussian noise with ε variance to surface points,
30% are obtained with gaussian noise with 3ε variance, and
the remaining ones are gathered by sampling uniformly the
bounding box in which the garment is contained. Since
in our experiments, the top and bottom garments are nor-
malized respectively into the upper and lower halves of the
[−1, 1]3 cube, we set ε = 0.003.

1.2. Draping Network

The networks W(x) ∈ R24 and ∆x(x, β) ∈ R3 that
predict blending weights and coarse displacements are im-
plemented by a 9-layer multilayer perceptron (MLP) with
a skip connection from the input layer to the middle.
Each layer has 256 nodes except the middle and the last
ones. ReLU is used as the activation function. The body-
parameter-embedding module B(β, θ) ∈ R128 and the
displacement-matrix moduleM(x, z) ∈ R128×3 for ∆xref
are implemented by a 5-layer MLP with LeakyReLU acti-
vation in-between. Each layer has 512 nodes except the last
one. ∆xIS uses the same architecture as ∆xref.

1.3. Training Hyperparameters

The generative models (top/bottom ones) are trained on
the 600/300 neutral garments for 4000 epochs, using mini-
batches of size B = 4. Each item of the mini-batch con-
tains an input point cloud with P = 10, 000 points and
N = 20, 000 random UDF 3D queries. The dimension of
the latent codes is set to 32 for both top and bottom gar-
ments, and we set λg = 0.1 in

Lgarm = Ldist + λgLgrad . (14)

The draping networks are trained for 250K iterations
with mini-batches of size 18, where each item is composed
of the vertices of one garment paired with one body shape
and pose. We set λ = 0.1 for Lpin and γ = 0.5 for Llayer.

Both the generative and the draping networks are trained
with Adam optimizer [8] and learning rates set to 0.0001
and 0.001 respectively.

2. Loss Terms and Ablation Studies
2.1. Lgarm for Garment Reconstruction

We report here an ablation study that we conducted to
determine the best formulation for Lgarm, the loss function
presented in Eq. (1) of the main paper, that we use to train
our garment generative network.

In particular, we consider three variants for Ldist, the
term of the supervision signal that guides the network to
predict accurate values for the garments UDF. In addition to
the binary cross-entropy loss (BCE) presented in Eq. (4) of
the main paper, we study the possibility of using more tradi-
tional regression losses, such as L1 and L2 losses. Adopting
the notation introduced in Sec. 3.1 of the main paper, the L1
loss is defined as 1

BN

∑
i,j |min(yij , δ)− ỹij |, while the L2

loss is computed as 1
BN

∑
i,j(min(yij , δ)− ỹij)2.

On top of the three variants for Ldist, we also consider
for each one the possibility of removing the gradients su-
pervision from Lgarm, i.e., setting λg = 0.

We trained our generative network for 48 hours with the
resulting six loss function variants and then compared the

3



BCE Loss L1 Loss L2 Loss

N
o 

gr
ad

ie
nt

s
su

pe
rv

is
io

n
W

ith
 g

ra
di

en
ts

su
pe

rv
is

io
n

Figure 13. Comparison between different loss functions for the garment generative network. We present the same garment recon-
structed by our generative network after being trained for 48 hours with six different alternatives of loss functions.

quality of the garments reconstructed with the garment de-
coder. Fig. 13 presents a significant example of what we
observed on the test set. Without gradients supervision (top
row of the figure), none of the considered loss functions
(BCE, L1 or L2) can guide the network to predict smooth
surfaces without artifacts or holes. Adding the gradients su-
pervision (bottom row) induces a strong regularization on
the predicted distance fields, helping the network to predict
surfaces without holes in most of the cases. However, us-
ing the L1 loss leads to rough surfaces, as one can observe
in the center column of the bottom row of the figure. The
BCE and the L2 losses (first and third columns of the bot-
tom row), instead, produce smooth surfaces that are pleas-
ant to see. We finally opted for the BCE loss over the L2
loss, since the network trained with the latter occasionally
predicts surfaces with small holes, as in the example shown
in the figure.

2.2. Lpin for Bottom Garments

To determine V , the set of bottom garment vertices that
need to be constrained by Lpin, we first find the closest
body vertex vB for each bottom garment vertex v. If vB
locates in the body trunk (cyan region as shown in Fig. 14),
v is added to V .

In Fig. 15, we show the draping results of bottom gar-
ments by using different values for λ in Lpin. When λ
equals 0 or 1, the deformations along the X and Z axes are
not natural because no constraints or too strong constraints
are applied, while it is not the case when λ = 0.1, which is
our setting.

Figure 14. Body region (marked in cyan) used to compute Lpin.

2.3. Llayer for Top-bottom Intersection

To determine C, the set of body vertices covered by
both the top and bottom garments, we first subdivide the
SMPL body mesh for a higher resolution, and then we com-
pute Ctop the set of closest body vertices for the given top
garment, and Cbottom the set of closest body vertices for
the bottom. C is derived as the intersection of Ctop and
Cbottom.

In Fig. 16 we compare the results of models trained with-
out and with Llayer. We can observe that without Llayer,
the top tank can intersect with the bottom trousers, while it
is not the case when using Llayer. This indicates the effi-
cacy of Llayer to avoid intersections between garments.

2.4. Physics-based Refinement

After recovering the draped garment GD from images
by the optimization of Eq. (12) of the main paper, we can
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𝜆 = 0 𝜆 = 0.1𝜆 = 1

Figure 15. Comparison between different values for λ of Lpin.
To restrict the deformation mainly along the vertical direction (Y
axis) and produce natural deformations along other directions, λ
has to be a positive value smaller than 1. We use λ = 0.1 for our
training.

w/o ℒ𝑙𝑎𝑦𝑒𝑟 w/ ℒ𝑙𝑎𝑦𝑒𝑟

Figure 16. Comparison: draping without and with Llayer .
Without it, the top and bottom garments intersect with each other.

apply the physics-based objectives of Eq. (7) (main paper)
to increase its level of realism

L(∆G) =Lstrain(GD + ∆G) + Lbend(GD + ∆G)

+ Lgravity(GD + ∆G) + Lcol(GD + ∆G) ,
(15)

where ∆G is the per-vertex-displacement initialized to zero.
For the recovery from 3D scans, we apply the following op-
timization which minimizes both the above physics-based
objectives and the Chamfer Distance d(·) to the input scan
SG

L(∆G) =Lstrain(GD + ∆G) + Lbend(GD + ∆G)

+ Lgravity(GD + ∆G) + Lcol(GD + ∆G)

+ d(GD + ∆G, SG) .

(16)

This refinement procedure is only applicable to open sur-
face meshes, and our UDF model is thus key to enabling
it. Applying Eq. (15) or Eq. (16) to an inflated garment (as
recovered by SMPLicit [3], ClothWild [13] and DIG [9])

indeed yields poor results with many self-intersections as il-
lustrated in Fig. 17. This is because inflated garments mod-
elled as SDFs have a non-zero thickness, with distinct inner
and outer surfaces whose interactions are not taken into ac-
count in this fabric model. The physics model we apply
on garment meshes indeed considers collisions of the gar-
ment with the body, but not with itself, which is what hap-
pens with the inner and outer surfaces in Fig. 17. Adding a
physics term to prevent self intersections would not be triv-
ial, and is related to the complex task of untangling layered
garments [2, 19]

Note that this is also the case for most garment drap-
ing softwares [6,14–16,20] to expect single layer garments.
Modeling garment with UDFs is thus a key feature of our
pipeline for its integration in downstream tasks.

Both the optimizations of Eqs. (12) and (13) of the main
paper and Eqs. (15) and (16) are done with Adam [4] but
with different learning rates set to 0.01 and 0.001 respec-
tively.

The watertight mesh
reconstructed by SDF.

The mesh refined by 
physics-based objectives.

Figure 17. Applying post-refinement procedure to watertight
mesh. Left: the watertight mesh reconstructed by DIG [9]. Right:
the same mesh after being refined with physics-based objectives
(Eq. (15)). Physics-based refinement is not compatible with in-
flated garment meshes, and leads to many self-intersections.

3. Additional Results

3.1. Garment Encoder/Decoder

3.1.1 Additional Qualitative Results

Fig. 18 and Fig. 19 show the encoding-decoding capabil-
ities of our garment generative network for top and bot-
tom test garments, respectively. The ground-truth garments
are passed through the garment encoder, which produces a
compact latent code for each clothing item. Then, our gar-
ment decoder reconstructs the input garments surface from
the latent codes. It is possible to notice how the output gar-
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Figure 18. Generative network: reconstruction of unseen garments in neutral pose/shape (top garments). Latent codes for unseen
garments can be obtained with our garment encoder. These codes are then used by the garment decoder to reconstruct open surface meshes.
Input garments are colored in purple, while the reconstructed meshes are colored in gray.
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Figure 19. Generative network: reconstruction of unseen garments in neutral pose/shape (bottom garments). Latent codes for
unseen garments can be obtained with our garment encoder. These codes are then used by the garment decoder to reconstruct open surface
meshes. Input garments are colored in dark gray, while the reconstructed meshes are colored in light gray.

ments closely match the input ones, both in terms of geom-
etry and topology.

3.1.2 Latent Space Optimization (LSO).

After training the garment generative network, we obtain a
latent space that allows us to sample a garment latent code
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Figure 20. Generative network: latent space optimization (top garments). After training, we can explore the latent space learned by
the garment generative network with gradient descent, to recover target garments from 2D silhouettes (top) or 3D point clouds (bottom).
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Figure 21. Generative network: latent space optimization (bottom garments). After training, we can explore the latent space learned
by the garment generative network with gradient descent, to recover garments from 2D silhouettes (top) or 3D point clouds (bottom).
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Figure 22. Additional results: draping garments of different topologies over bodies in various shapes and poses with our method.

and to feed it to the implicit decoder to reconstruct the ex-
plicit surface. We study here the possibility of exploring
the garment latent space by the means of LSO. To do that,
given a target 2D silhouette or a sparse 3D point cloud of a
garment, we optimize with gradient descent a latent code –
initialized to the training codes average – so that the frozen
decoder conditioned on it can produce a garment which fits
the target image or point cloud.

Given the silhouette S of a target garment, we can re-
trieve its latent code z by minimizing

L(z) = LIoU(R(G),S) ,

G = MeshUDF(DG(·, z)) ,
(17)

where LIoU is the IoU loss [10] in pixel space measuring the
difference between 2D silhouettes , R(·) is a differentiable
silhouette renderer for meshes [17], and G is the garment
mesh reconstructed with our garment decoder using z.

In the case of a target garment provided as a point cloud
P , the garment latent code z can be obtained by minimizing

L(z) = d(ps(G),P) ,

G = MeshUDF(DG(·, z)) ,
(18)

where d(a, b) is the Chamfer distance [4] between point
clouds a and b, and ps(·) represents a differentiable pro-
cedure to sample points from a given mesh [17].

In both cases, we run the optimization for 1000 steps,
with Adam optimizer [8] and learning rate set to 0.01.

In Fig. 20 and Fig. 21 we present some results of the LSO
procedures here described, showing that the latent space
learned by the garment generative network can be explored
effectively with gradient descent to recover the codes asso-
ciated with the target garments.

3.2. Draping Network

3.2.1 Additional Qualitative Results

In Fig. 22 we show additional qualitative results of gar-
ment draping produced by our method, where the garment
meshes are generated by our UDF model. It can be seen that
our method can realistically drape garments with different
topologies over bodies of various shapes and poses.

3.2.2 Euclidean Distance is not a Good Metric

In Fig. 23, we show an example of bottom garment where
our result is more realistic than the competitors DeePSD [1]
and DIG [9] despite having the highest Euclidean distance.
This demonstrates again that Euclidean distance is not able
to measure the draping quality, as discussed in the main pa-
per.
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Ours
ED=56.1mm

DIG
ED=12.9mm

DeePSD
ED=20.2mm

GT

Figure 23. Comparison between DeePSD, DIG and our
method. Our result is more realistic than the others despite having
the highest Euclidean distance (ED) error.

3.2.3 Quantitative Evaluation in Physics-based Energy

In Tab. 2, we report the physics-based energy of Strain,
Bending and Gravity as proposed by [18] on test garment
meshes when draped by DeePSD, DIG and our method.
These energy terms are used as training losses for our gar-
ment network (Eqs. (7) and (8) of the main paper). For the
gravitational potential energy, we choose the lowest body
vertex as the 0 level. Generally, our results have the low-
est energies, especially for the Strain component. Since
DeePSD and DIG do not apply constraints on mesh faces,
their results exhibit much higher Strain energy. This indi-
cates that our method can produce results that have more
realistic physical properties.

3.3. Inference Times

We report inference times for the components of our
framework, computed on an NVIDIA Tesla V100 GPU.
The garment encoder, which needs to be run only once for
each garment, takes ∼25 milliseconds. The decoder takes
∼2 seconds to reconstruct an explicit garment mesh from a
given latent code, including the modified Marching Cubes
from [5] at resolution 2563.

The draping network takes ∼5 ms to deform a garment
mesh composed of 5K vertices. Since it is formulated in an
implicit manner and is queried at each vertex, its inference
time increases to ∼8 ms for a mesh with 8K vertices, or
∼53 ms with 100K vertices.

3.4. Fitting SMPLicit [3] to 3D Scans

In Fig. 24 we show results of fitting the concurrent ap-
proach SMPLicit [3] to 3D scans of the SIZER dataset [21].
We can observe that they are not as realistic as ours shown in
Fig. 10 of the main paper. Since we have no access to their
code and not enough information for a re-implementation,
we directly extract this figure from [3].

Figure 24. Recovered garments of SMPLicit from 3D scans.
Figures are extracted from [3].

4. Human Evaluation
In Fig. 25 we show the interface and instructions that

were presented to the 187 respondents of our survey. These
evaluators were volunteers with various backgrounds from
the authors respective social circles, which were purposely
not given any further detail or instruction. We collected col-
lected 3738 user opinions in total, each user expressing 20
opinions on average.
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Figure 25. Interface of our qualitative survey. The garment is draped with our method, DIG, and DeePSD, in a random order.
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Top Strain ↓ Bending ↓ Gravity ↓ Total ↓
DeePSD 7.22 0.01 0.98 8.21

DIG 6.32 0.01 1.05 7.38

Ours 0.43 0.01 1.05 1.81

Bottom Strain ↓ Bending ↓ Gravity ↓ Total ↓
DeePSD 8.46 0.02 0.90 9.38

DIG 7.48 0.01 0.90 8.39

Ours 0.41 0.01 0.86 1.28

Table 2. Draping unseen garment meshes. Quantitative comparison in physics-based energy between DeePSD, DIG and our method.
“Strain”, “Bending” and “Gravity“ denote the membrane strain energy, the bending energy and the gravitational potential energy, respec-
tively.
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