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A. Optimal Transport Discussion
The Otpimal Transport formulation presented throughout the paper is formulated in discrete space. In this section, we

present the more general formulation of which the discrete one is a particular case of. We also discuss the Wasserstein
distance in the particular context of object detection and the effect of regularization on the uniqueness of the solutions. Only
the case of the original OT formulation—or “balanced” case—is covered here.

A.1. Continuous Formulation

More generally, we define Optimal Transport in its continuous form.

Definition 5 (Continuous Optimal Transport). Given two distributions α ∈P+(X) and β ∈P+(Y ) of same mass
∫
α dx =∫

β dy, and given an underlying cost function c : X × Y → [0,+∞], we define Continuous Optimal Transport as the
minimization of a transport cost

inf

{∫
X×Y

cdγ : γ ∈ U(α, β)

}
, (8)

with admissible solutions, here called transport plans

U(α, β) =

{
γ ∈P+(X × Y ) :

∫
Y

dγ = α and
∫
X

dγ = β

}
. (9)

If a minimum exists, it is called the optimal transport plan γ̂.

We replace the probability simplex ∆N by the space on probability distributions P+(X) on X . The transport plans are
the set of joint probability distribution γ ∈P+(X×Y ), whose marginal distributions are α and β. The discrete formulation
(Definition 1) is a particular case where α =

∑
i αiδŷi

, β =
∑

j βjδyj
and the cost c = Lmatch. In this case, a minimum

always exists.

A.2. Wasserstein Distance

This infimum defines a distance between α and β, called the Wasserstein distanceWp(α, β), provided that the underlying
cost function is also a distance c = dp up to some exponent p ∈ [1,+∞[. In our case, Lmatch is not a distance. More formally,
sum of distances are distances. The ℓ1 norm is a distance, and 1− IoU, or 1−GIoU also are [7]. However, the cross entropy
or the focal loss do not satisfy the triangular inequality or the symmetry properties. In consequence, we cannot talk about a
Wasserstein distance here.

Furthermore, interpreting a Wasserstein distanceWp(α, β) would not make much sense even if the underlying matching
cost was to be a distance. Indeed, the distributions α and β would be the same at every iteration in our framework. In other
words, the distance would always be computed between the same points, but the underlying cost would change and it would
be different for each image. Each iteration would be computing the distance of two same points in a changing geometry and
each image would have its own evolving geometry.

For completeness, we must mention that the regularized version does not define a distance as Wp,reg.(α,α) =
−ϵH(INp,Np

/Np) > 0 with INp,Np
the identity matrix of size Np (we refer to [5, 4, 3] for a broader discussion on the

subject).

A.3. Uniqueness

We consider here the discrete formulation used throughout the paper. By classical linear programming theory, the non-
regularized problem admits a non-unique solution if and only if multiple extreme points minimize the problem. In that
case, the set of minimizers is all the linear interpolations between those extreme points. The regularization term however is
ϵ-strongly convex; the regularized problem thus always has a unique solution [6].



B. Proofs of the Propositions
In this section, we provide the proofs of Propositions 1 and 2 and enrich them with some insight through a few additional

results.

B.1. Hungarian Algorithm

Before providing a proof of the particular equivalence between OT and BM, we first consider a more general result.

Lemma 1. We consider the rational probability simplex ∆N
Q = {u ∈ QN

≥0|
∑

i ui = 1}. Given an OT problem (Definition 1)
with underlying distributions α ∈ ∆N

Q and β ∈ ∆M
Q . Each extreme point of U(α,β) is comprised of elements, which are

multiples of the common measure of α and β:

P is an extreme point of U(α,β) =⇒ P ∈ CM(α,β) · NN×M
≥0 , (10)

where the common measure is the greatest rational such that all non-zero elements of both distributions are multiples of it:

CM(α,β) =
GCD(LCM([α, β ]) / [α, β ])

LCM([α, β ])
∈ Q>0, (11)

with GCD : NN
>0 → N>0 the greatest common divisor and LCM : NN

>0 → N>0 the lowest common multiple.
The common measure extends the GCD to non-integers. As an example CM([ 2/3, 4/5 ]) = 2/15 and CM([ 2/3, 5/6, 4/7 ]) =

1/42.

Proof. In [1], Corollary 8.1.3, an algorithm is given to build the exhaustive list of extreme points. It comprises only minimum
and subtraction operations, which leave the common measure unchanged.

Corollary 1. Given the underlying distributions as in Proposition 1, the extreme points of U(α,β) are comprised only of
zeros and 1/Np:

P is an extreme point of U(α,β) =⇒ P ∈ {0, 1/Np}Np×(Ng+1)
. (12)

This is a direct consequence of Lemma 1 and the mass constraints directly implying that Pi ≤ 1/Np for all i. In this
particular case, there is also an equivalence.

Lemma 2. Given the underlying distributions as in Proposition 1, the extreme points of U(α,β) are comprised only of zeros
and 1/Np:

P is an extreme point of U(α,β) ⇐⇒ P ∈ {0, 1/Np}Np×(Ng+1) and P ∈ U(α,β). (13)

Proof. We consider Corollary 1 and add the fact that such a match P ∈ {0, 1/Np}Np×(Ng+1) only has one element per row
(or prediction if we prefer) to satisfy the mass constraints. Therefore, it cannot be any interpolation of two other extreme
points.

We however also give a more direct proof, based essentially on the same arguments.

Proof. We will first show that the elements of the match P corresponding to any extreme point, can only be 1/Np or 0.
Therefore we can consider the associated bipartite graph of the problem: each prediction consists in a node i and each ground
truth a node j. Each non-zero value entry of P connects nodes i and j with weight Pi,j . The solution is admissible if and only
if the weight of each node i equals αi and j equals βj . A transport plan P is an extreme point if and only if the corresponding
bipartite graph only consists in trees, or equivalently, it has no cycle (Theorem 8.1.2 of [1]).

Because the mass constraint must all sum up to one for the predictions, we already know that Pi,j ≤ 1/Np. We will now
proceed ad absurdum and suppose that there were to be an entry 0 < Pi,j < 1/Np connecting a prediction and a ground truth.
In order to satisfy the mass constraints, they would both also have to be connected to another prediction and another ground
truth. Similarly, these would also have to be connected to at least one prediction and one ground truth, and so on. They would
all form a same graph, or be “linked” together in other words. By consequence, each new connection must be done to yet
“unlinked” prediction and ground truth to avoid the formation of a cycle. Considering that there are Np predictions, there
would be at the end at least 2Np edges within the graph. This is incompatible with the fact that there cannot be any cycle
(Corollary 8.1.3 of [1]). By consequence, the entries of P must be either 0 or 1/Np.



We can now proceed to prove the said proposition.

Proposition 1. The Hungarian algorithm with Np predictions and Ng ≤ Np ground truth objects is a particular case of OT
with P ∈ U(α,β) ⊂ RNp×(Ng+1), consisting of the predictions and the ground truth objects, with the background added
{yj}Ng+1

j=1 = {yj}Ng

j=1 ∪
(
yNg+1 = ∅

)
. The chosen underlying distributions are

α =
1

Np
[ 1, 1, 1, . . . , 1︸ ︷︷ ︸

Np predictions

], (14)

β =
1

Np
[ 1, 1, . . . , 1︸ ︷︷ ︸
Ng ground truth objects

, (Np −Ng)︸ ︷︷ ︸
background ∅

], (15)

provided the background cost is constant: Lmatch (ŷi,∅) = c∅. In particular for j ∈ JNgK, we have σ̂(j) = {i : Pi,j ̸= 0},
or equivalently σ̂(j) = {i : Pi,j = 1/Np}.

Proof. We will demonstrate that OT with α = 1
Np

[ 1, 1, 1, . . . , 1 ] and β = 1
Np

[ 1, 1, . . . , 1, (Np − Ng) ] and
constant background cost necessarily has the BM as minimal solution. We first observe that because of the linear nature of
the problem, there is at least one extreme point that minimizes the total cost. By directly applying Lemma 2, there must be
exactly one match per prediction and exactly one match for each non-background ground truth to satisfy the mass constraints.
The added background ground truth has Np − Ng matches. This is equivalent to saying that disregarding the background
ground truth, we wave σ ∈ PNg (JNpK) with σ̂(j) = {i : Pi,j = 1/Np}. The proof is concluded by observing that the
part of the background in the total transport cost is equal to 1

Np
(Np −Ng) c∅ and is constant, hence not influencing the

minimum.

B.2. Minimum Matching with Threshold

Proposition 2 (Matching to the closest). We consider the same objects as Proposition 1. In the limit of τ1 →∞ and τ2 = 0,
Unbalanced OT (Definition 4) without regularization (ϵ = 0) admits as solution each prediction being matched to the closest
ground truth object unless that distance is greater than a threshold value Lmatch

(
ŷi,yNg+1 = ∅

)
= c∅. It is then matched

to the background ∅. In particular, we have

P̂i,j =

{ 1
Np

if j = arg minj∈JNg+1K {Lmatch (ŷi,yj)} ,
0 otherwise.

(16)

Proof. By taking the limit of τ1 → +∞ and setting ϵ, τ2 = 0, the problem becomes

argmin
{∑Np,Ng+1

i,j=1 Pi,jLmatch (yi, ŷj)
∣∣∣P ∈ RNp×(Ng+1)

≥0

}
,

s.t.
∑

j Pi,j = 1/Np ∀i.
(17)

We can now see that the choice made in each row is independent from the other rows. In other words, each ground truth
object can be matched independently of the others. The minimization is then obtained if, for each prediction (or row), all the
weight is put on the ground truth object with minimum cost, including the background. This leads to Eq. (16).

Corollary 2 (Matching to the closest without threshold). Provided the background cost is more expensive than any other cost
c∅ > max

{
Lmatch (ŷi,yj)

∣∣ i ∈ JNpK and j ∈ JNgK
}

, each prediction will always be matched to the closest ground truth.

In theory, this a much too strong condition, the background cost can just be greater than the minimum cost for each
prediction Lmatch (ŷi,∅) > minj {Lmatch (ŷi,yj)}. In practice, however, this does not change much. It suffices to set the
background cost high enough and we are assured to get a minimum. One could also imagine a different background cost for
each prediction in order to have a more granular threshold.

C. Scaling Algorithms
We present here the two scaling algorithms: Sinkhorn’s algorithm for “‘balanced” Optimal Transport and its variant for

Unbalanced Optimal Transport. We further show how it is connected to the softmax.



C.1. Sinkhorn and Variant

These two algorithms are taken from [6, 2]. In particular we can see how taking τ1 → +∞ and τ2 → +∞ in Algorithm 2
leads to Algorithm 1. Indeed, we have limτ→+∞

τ
τ+ϵ = 1. By ⊘, we denote the element-wise (or Hadamard) division.

Data: Distributions α ∈ ∆Np and β ∈ ∆Ng+1, regularization parameter ϵ ∈ R>0 and cost matrix
C = [Lmatch (ŷi,yj)]

Np,Ng+1
i,j=1 ∈ RNp×Ng+1

≥0 (including background yNg+1 = ∅).

Result: Match P̂ ∈ ∆Np,Ng+1.
1 begin
2 Kϵ ←− exp (−C/ϵ) /* Gramm matrix (element-wise) */
3 u←− 1Np

/Np /* Dual variable associated with α */
4 v ←− 1Ng+1/ (Ng + 1) /* Dual variable associated with β */
5 repeat
6 u←− α⊘ (Kϵv) /* Scaling iteration for u */

7 v ←− β ⊘
(
K⊤

ϵ u
)

/* Scaling iteration for v */
8 until convergence
9 P̂ ←− uKϵv

Algorithm 1: Sinkhorn’s algorithm for “balanced” Optimal Transport with regularization.

Data: Distributions α ∈ ∆Np and β ∈ ∆Ng+1, regularization parameter ϵ ∈ R>0, constraint parameters
τ1, τ2 ∈ R≥0 and cost matrix C = [Lmatch (ŷi,yj)]

Np,Ng+1
i,j=1 ∈ RNp×Ng+1

≥0 (including background
yNg+1 = ∅).

Result: Match P̂ ∈ RNp,Ng+1
≥0 .

1 begin
2 Kϵ ←− exp (−C/ϵ) /* Gramm matrix (element-wise) */
3 u←− 1Np/Np /* Dual variable associated with α */
4 v ←− 1Ng+1/ (Ng + 1) /* Dual variable associated with β */
5 repeat
6 u←−

(
α⊘ (Kϵv)

) τ1
τ1+ϵ /* Scaling iteration for u */

7 v ←−
(
β ⊘ (K⊤

ϵ u)
) τ2

τ2+ϵ /* Scaling iteration for v */
8 until convergence
9 P̂ ←− uKϵv

Algorithm 2: Scaling algorithm for Unbalanced Optimal Transport with regularization.

C.2. Connection with the Softmax

In this section, we lay a connection between the softmax and the solutions of the scaling algorithms, in particular con-
sidering its first iterations. We consider more precisely the softmin, which is the opposite of the softmax: (softmin(v))i =

(softmax(−v))i = exp(−vi)/
∑N

j=1 exp(−vj), for any vector v ∈ RN . Considering a softmin over Lmatch (ŷi,yj) is thus
the same as considering the softmax over−Lmatch (ŷi,yj), as in [8]. By simplicity, we will only use the softmax terminology.

C.2.1 Without Background

We first consider the case without background, where the underlying distributions are equal to α = 1Np/Np and β =
1Ng

/Ng . This does not correspond to the setup of Prop. 1 and only approximates a one-to-one match if Np = Ng .

Proposition 3. Consider the two uniform distributions α = 1Np
/Np and β = 1Ng

/Ng with cost Lmatch (ŷi,yj). The
solution of the Unbalanced OT scaling algorithm with regularization ε = 1, τ1 = 0 and τ2 → +∞ is proportional to
performing a softmax over the predictions, for each ground truth object. In particular, we have

P̂i,j =
exp (−Lmatch (ŷi,yj))

Ng

∑Np

i=1 exp (−Lmatch (ŷi,yj))
. (18)
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Figure 7. Comparison of the different limit cases of Unbalanced Optimal Transport, with and without regularization.

Proof. We consider the first scaling iteration from Alg. 2. We first observe that the exponents lead to limτ1→0
τ1

τ1+ε = 0 and
limτ2→+∞

τ2
τ2+ε = 1. Starting with v0 = 1Ng/Ng , we obtain the new

u1 = (α⊘ (Kεv0))
0
= 1N , or (u1)i = 1, (19)

v1 =
(
β ⊘

(
K⊤

ε u1

))1
=
(
1Ng/Ng

)
⊘
(
K⊤

ε 1N

)
, or (v1)j =

1

Ng

∑Np

i=1 exp (−Lmatch (ŷi,yj))
. (20)

We observe that u2 = u1 and v2 = v1 and conclude that the algorithm converges after only one iteration. Computing the
match P̂ = uKϵv leads to the softmax.

The exact opposite happens if we consider τ1 → +∞ and τ2 = 0 instead: the softmax is taken over the ground truth
objects for each prediction. The proof is the same, just inverting u and v and obtaining factor 1/Np instead. This can be
observed at Fig. 7b.

If we would like to exactly obtain the softmax without the factor 1/Ng (or 1/Np), we could consider only one iteration
starting with both initial dual variables u0 and v0. It would however not be the optimal match P̂ and will converge to the
same solution as in Prop. 3 after the second—and last—iteration. Nevertheless, starting from both initial dual variables is
more interesting in the “balanced” case.

Proposition 4. Consider the two uniform distributions α = 1Np
/Np and β = 1Ng

/Ng with cost Lmatch (ŷi,yj). Starting
from both initial dual variables, one iteration of the “balanced” OT scaling algorithm with regularization ε = 1 is equal to

Pi,j =
exp (−Lmatch (ŷi,yj))∑Np

i=1 exp (−Lmatch (ŷi,yj)) ·
∑Ng

j=1 exp (−Lmatch (ŷi,yj))
. (21)

Proof. We consider the first scaling iteration from Alg. 1 with α = 1Np
/Np and β = 1Ng

/Ng . Starting with u0 = 1Np
/Np

and v0 = 1Ng/Ng , we obtain the new

u1 = α⊘ (Kεv0) =
(
1Np/Np

)
⊘
(
Kε

(
1Ng/Ng

))
, or (u1)i =

Ng

Np

∑Ng

j=1 exp (−Lmatch (ŷi,yj))
, (22)

v1 = β ⊘
(
K⊤

ε u0

)
=
(
1Ng

/Ng

)
⊘
(
K⊤

ε

(
1Np

/Np

))
, or (v1)j =

Np

Ng

∑Np

i=1 exp (−Lmatch (ŷi,yj))
. (23)

Computing the match P = uKϵv leads to the Eq. 21. This is not the optimal match P̂ as the algorithm did not converge
yet.

The dual-softmax considered in [8] is essentially the same as Prop. 4, with the difference of a factor 2 in the numerator’s
exponential:

Pi,j = softmax
(
[−Lmatch (ŷi,yk)]

Ng

k=1

)
j
· softmax

(
[−Lmatch (ŷl,yj)]

Np

j=1

)
i
, (24)

=
exp (−2Lmatch (ŷi,yj))∑Np

i=1 exp (−Lmatch (ŷi,yj)) ·
∑Ng

j=1 exp (−Lmatch (ŷi,yj))
. (25)



C.2.2 With Background

We now consider the underlying distributions as defined in Prop. 1. Fundamentally, adding a background with a different
weight than the other ground truth objects does not change much. The unbalanced case with τ1 → +∞ and τ2 = 0 remains
exactly the same. The opposite case with τ1 = 0 and τ2 → +∞ now becomes

P̂i,j =
1

Np

exp (−Lmatch (ŷi,yj))∑Np

i=1 exp (−Lmatch (ŷi,yj))
, (26)

for all 1 ≤ j ≤ Ng , and

P̂i,j =
Np −Ng

Np

exp (−Lmatch (ŷi,yj))∑Np

i=1 exp (−Lmatch (ŷi,yj))
, (27)

for j = Ng + 1 (the background). In essence, this ensures that the mass constraints induced by τ2 are satisfied, as the
background has a higher weight.

Similarly, the “balanced” case is the same as Eq. 21 for all 1 ≤ j ≤ Ng . For j = Ng +1, we have the same with an added
factor:

Pi,j = (Np −Ng)
exp (−Lmatch (ŷi,yj))∑Np

i=1 exp (−Lmatch (ŷi,yj)) ·
∑Ng

j=1 exp (−Lmatch (ŷi,yj))
. (28)

C.2.3 Other Regularization

We can also consider other cases that having the regularization ε = 1. The regularization ε controls the “softness” of the
softmax: the greater is ε, the softer is the minimum; the smaller, the harder. In the case of no regularization at all (ε → 0),
the softmax is exactly a minimum as proven in Prop. 2. This can be observed at Fig. 8.

D. Scaling the Entropic Parameter
In this section, we consider the particular choice of the entropic regularization parameter. In particular, we study how it

scales with the problem size.

D.1. Uniform Matches

Definition 6 (Matches). We define a match P ∈ RNp×(Ng+1)
+ as a positive matrix of unity mass

∑
i,j Pi,j = 1. The set of

all matches of size Np × (Ng + 1) is the joint probability simplex ∆Np×(Ng+1).

We now consider a particular subset of all these matches.

Definition 7 (Uniform Matches). We define the set of uniform matches ∆Np×(Ng+1)
unif. ⊊ ∆Np×(Ng+1) as the set of matrices

P unif. ∈ ∆
Np×(Ng+1)
unif. , containing only zero elements and all non-zero elements having the same value:

P unif.
i,j =

{
0 for some values,
1/
∣∣spt (P unif.

)∣∣ for the other values, (29)

with the support spt : P 7→ {(i, j) : Pi,j ̸= 0} and | · | the cardinality of a set.

We directly see from the definition that the matrices are well defined as they have unity mass. They are uniquely defined
by the carnality of their support.

Proposition 5 (Cardinality). The cardinality of ∆Np×(Ng+1)
unif. is given by∣∣∣∆Np×(Ng+1)
unif.

∣∣∣ = 2Np(Ng+1). (30)

Proof. We first notice that the different possible supports k = spt
(
P unif.

)
range from 1 ≤ k ≤ Np (Ng + 1). For any

support of size k, we have to consider a uniform match containing all combinations. The rest follows from the binomial
identity

∑Np(Ng+1)
k=1

(
Np(Ng+1)

k

)
= 2Np(Ng+1).
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(b) Unbalanced OT with ε = 0.2,
τ1 = 0.001 and τ2 = 1000.
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(c) Unbalanced OT with ε = 1,
τ1 = 0.001 and τ2 = 1000.
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(d) Unbalanced OT with ε = 5,
τ1 = 0.001 and τ2 = 1000.
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(e) Unbalanced OT with ε = 0.2,
τ1 = 1000 and τ2 = 0.001.
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(f) Unbalanced OT with ε = 1,
τ1 = 1000 and τ2 = 0.001.
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(g) Unbalanced OT with ε = 5,
τ1 = 1000 and τ2 = 0.001.
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(h) “Balanced” OT with only one
iteration and ε = 0.2.
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gence with ε = 0.2.
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(l) “Balanced” OT until conver-
gence with ε = 1.
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Figure 8. Connection between scaling algorithms and the softmax. The pairwise matching cost between the predictions (numbers) and the
ground truth objects (letters) is given in Fig. 8a. The background cost is c∅ = 2. The scaling algorithm for Unbalanced OT corresponds
to performing the softmax column-wise (Figs. 8b, 8c and 8d), or row-wise (Figs. 8e, 8f and 8g). Similarly, one iteration of the scaling
algorithm for “balanced” OT is almost equivalent to the dual-softmax (Figs. 8h, 8i and 8j), but does not satisfy the mass constraints unlike
when it is run until convergence (Figs. 8k, 8l and 8m).
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We can also see that the uniform matches cover the set of all matches.

Proposition 6 (Diameter). The diameter of the set of transport matrices ∆Np×(Ng+1) and uniform transport matrices
∆

Np×(Ng+1)
unif. , equipped with the Fröbenius norm ∥ · ∥F , is given by

diam
(
∆Np×(Ng+1)

)
= diam

(
∆

Np×(Ng+1)
unif.

)
=
√
2 (31)

Proof. Maximizing the Fröbenius norm is equivalent to considering the maximization of
∑

i(ui− vi)
2 subject to

∑
i ui = 1

and
∑

i vi = 1, with u,v ≥ 0. It takes its maximum value on the boundary of the admissible solutions, for ui = 1 (the rest
is zero) and vj = 1 (the rest zero) for any j ̸= i. These extreme points are also in ∆

Np×(Ng+1)
unif. , in particular those of unity

support spt
(
P unif.

)
= 1.

Proposition 7. The Fröbenius norm square ∥P unif.
1 −P unif.

2 ∥2F between two uniform matches P unif.
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Proof. By decomposing the all indices as in Figure 9 in
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and noticing that all other values are zero, we have for ∥P unif.
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The rest is just a simplification of the latter.

Corollary 3. Each uniform match P unif.
1 ∈ ∆
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2 ∈
∆

Np×(Ng+1)
unif. of support increased by one

∣∣spt (P unif.
2

)∣∣ = ∣∣spt (P unif.
1

)∣∣ + 1 and differing in support for only one entry∣∣spt (P unif.
2

)
\ spt

(
P unif.

1
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In in the particular limit case of
∣∣spt (P unif.

1

)∣∣ = Np (Ng + 1), its closest neighbors are all the P unif.
2 such that∣∣spt (P unif.

2

)∣∣ = Np (Ng + 1)− 1.

Proposition 8. We consider the projector P : ∆Np×(Ng+1) → ∆
Np×(Ng+1)
unif. , that minimizes the Fröbenius norm. For any

P ∈ ∆Np×(Ng+1), we consider
P(P ) = argmin

P unif.∈∆
Np×(Ng+1)
unif.

∥P − P unif.∥F . (34)

It is given by the matrix P unif. ∈ ∆
Np×(Ng+1)
unif. with the k greatest elements of P as support and
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Proof. We consider the distance between any element P ∈ ∆Np×(Ng+1) and P unif. ∈ ∆
Np×(Ng+1)
unif. : ∥P − P unif.∥2F =∑Np,(Ng+1)
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is satisfied.

The norm with the projector is therefore also given by ∥P − P(P )∥2F = ∥P ∥F − 2
∑

spt(P(P )) Pij +
1

|spt(P(P ))| . Equa-
tion (36) gives a direct algorithm to determine k and thus the projected value of any match P .

D.2. Entropy

The study of uniform matches is relevant as they have an easy formulation for their entropy.

Definition 8 (Entropy). The entropy H : ∆Np×(Ng+1) → R≥0 of a match P is given by

H(P )
def.
= −

∑
i,j

Pi,j (log (Pi,j)− 1) . (37)

If one of the elements would be zero, i.e., Pi,j = 0, we consider Pi,j log (Pi,j − 1) = 0.

The latter condition ensures that the entropy is well defined. This choice is justified as it remains consistent with the limit.
Some authors prefer another convention [6].

Lemma 3. The entropy of a uniform match P unif. ∈ ∆
Np×(Ng+1)
unif. is given by

H(P unif.) = log
(∣∣spt(P unif.)

∣∣)+ 1. (38)

Proof. The proof is a direct application of the definition of the entropy:
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Proposition 9. For any match P ∈ ∆Np×(Ng+1),

1 ≤ H(P ) ≤ log(Np (Ng + 1)) + 1. (43)

Proof. For an arbitrary coupling matrix, the entropy is always minimal if Pi,j = 1 for one element and all the others are zero.
Similarly, the entropy is always for the uniform match Pi,j = 1/ |spt (P )| for all i, j, with |spt (P )| = Np × (Ng + 1).

D.3. Rule of Thumb

We first consider two different matches of different dimensions P1 ∈ ∆Np,1×(Ng,1+1) and P2 ∈ ∆Np,2×(Ng,2+1). In this
case, the OT with regularization cost (Definition 3) is given by

∑Np,(Ng+1)
i,j=1 Pi,jLmatch (ŷi,yj)−ϵH(P ). The goal is to scale

the regularization parameter ϵ in such a way that the weight of the entropy is proportionally the same. Because of unit mass
of any match, we could assume that the first term

∑Np,(Ng+1)
i,j=1 Pi,jLmatch (ŷi,yj) is independent of Np and Ng in magnitude.

We therefore have to guarantee that ϵ1H(P1) = ϵ2H(P2). Given an already determined regularization value ϵ1 for one of
the two sizes, the other can be found with ϵ2 = ϵ1H(P1) /H(P2). In practice, however, the entropy is not trivial and we can
rely on the projection onto the uniform matches

ϵ1 = ϵ2
log (|spt (P (P2))|) + 1

log (|spt (P (P1))|) + 1
. (44)

In the particular case of Proposition 1, we can use the approximation |spt (P (P ))| = Np, which gives

ϵ1 = ϵ2
log (Np,2) + 1

log (Np,1) + 1
. (45)

The idea is to determine the optimal value ϵ1 on toy examples. By setting Np = Np,2, ϵ = ϵ2 and ϵ0 = ϵ1 (log (Np,1) + 1),
we can use the simple scaling formula ϵ = ϵ0/ (log (Np) + 1). From our experiments, we determined ϵ0 = 0.12.

E. Qualitative Analysis
This section provides qualitative examples (Figure 10 and Figure 11) of some matches, as well as a convergence analysis

for DETR and Deformable DETR. We compare the losses and matches P of the two matching algorithms at different training
epochs.

Figure 10 shows some assignments of the two matching algorithms for DETR on the Color Boxes dataset. We sample
examples with few ground truth objects for readability. We only show predictions that are matched at least once with a
background ∅ ground truth in three consecutive epochs. At the beginning of the training, the Bipartite Matching with the
Hungarian algorithm assigns different predictions to the ground truth objects from one epoch to the other. As an example,
the algorithm for image №630 assigns predictions {4, 49}, {8, 1} and then {99, 1} to the ground-truth objects {A,B} at
epoch 25 to 27 (Figure 10a). The regularized OT match instead provides a smoother solution and is more consistent from
one epoch to the other. Later in training, Figure 10a illustrates that the regularized OT matches are one-to-one and behave
like the bipartite ones.

Figure 12 provides the loss curves for DETR on the Color Boxes dataset. The curves suggest that the cross-entropy loss
term mainly drives the convergence speedup in the early training epochs. We don’t observe such speedups on COCO or
with Deformable DETR (Figure 13). An explanation could be that the difference between DETR and Deformable DETR
is due to the slower convergence of transformers (we also tried DETR with the focal loss from Deformable DETR without
improvement). The difference between Color Boxes and COCO is difficult to isolate, but probably due to the wider class
diversity in the latter.

F. Number of Sinkhorn Iterations
Using a stopping criterion is not straightforward when solving a batch of matching problems. The scaling algorithm

is therefore set to a fixed number of iterations. Figure 14 displays the results for different numbers of iterations. For the
balanced OT with 300 predictions (Figure 14a), the AP increases only slightly when more than 10 iterations are performed.
Furthermore, it is sufficient to run 1 iteration in terms of the AR. For the Unbalanced OT with 8,732 predictions (Figure
14b), the metrics are significantly lower when running for less than 5 iterations. Again, running more than 10 iterations only
slightly improves the final performance. This fact is supported by Prop. 3, which shows that in the limit case where τ1 = 0
and τ2 → +∞, only one or two iterations are required for convergence (depending on the implementation).
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(a) Resolut of the OT match (top row) and the Hungarian match (bottom row) on image №630

A B C ∅

3
41
47
59
65
80

epoch 25

A B C ∅

epoch 26

A B C ∅

epoch 27

A B C ∅

6
41
59
65
80

epoch 75

A B C ∅

epoch 76

A B C ∅

epoch 77

A B C ∅

3
41
65
85

epoch 125

A B C ∅

epoch 126

A B C ∅

epoch 127

A B C ∅

4
11
28
39
55
59
67
81
90

epoch 25

A B C ∅

epoch 26

A B C ∅

epoch 27

A B C ∅

11
14
31
34
63
69

epoch 75

A B C ∅

epoch 76

A B C ∅

epoch 77

A B C ∅

6
31
70

epoch 125

A B C ∅

epoch 126

A B C ∅

epoch 127

(b) Resolut of the OT match (top row) and the Hungarian match (bottom row) on image №180

A B C D E ∅

7
9

14
22
32
41
47
48
50
54
65

epoch 25

A B C D E ∅

epoch 26

A B C D E ∅

epoch 27

A B C D E ∅

3
22
50
54
63
69
99

epoch 75

A B C D E ∅

epoch 76

A B C D E ∅

epoch 77

A B C D E ∅

22
48
50
54
63
69

epoch 125

A B C D E ∅

epoch 126

A B C D E ∅

epoch 127

A B C D E ∅

14
21
33
36
37
57
62
63
65
66
81
83
92
99

epoch 25

A B C D E ∅

epoch 26

A B C D E ∅

epoch 27

A B C D E ∅

6
14
26
36
55
81
82

epoch 75

A B C D E ∅

epoch 76

A B C D E ∅

epoch 77

A B C D E ∅

6
17
42
52
56
81
82

epoch 125

A B C D E ∅

epoch 126

A B C D E ∅

epoch 127

(c) Resolut of the OT match (top row) and the Hungarian match (bottom row) on image №613

Figure 10. Output of the matching algorithms with DETR on the validation set of the Color Boxes Dataset. The model is trained two times:
once with an OT match and once with a Hungarian matching. The rows indicate the predictions and the columns indicate the ground truth
objects (including the background ∅). We sample examples with few ground truth objects for readability and only show predictions that
are matched at least once with a non-background ground truth.

G. First Constraint Parameter
In this section, we analyze the effect of the prediction’s mass constraint parameter τ1, while we fix parameter τ2 to a large

value τ2 = 100 to simulate a hard constraint. Parameter τ1 controls the degree to which variations in the prediction masses
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Figure 11. Output of the matching algorithms with Deformable-DETR on the validation set of the Color Boxes Dataset. The model is
trained two times: once with an OT match and once with a Hungarian matching. The rows indicate the predictions and the columns indicate
the ground truth objects (including the background ∅). We sample examples with few ground truth objects for readability and only show
predictions that are matched at least once with a non-background ground truth.

are penalized. Each ground-truth object can be matched to the best prediction in the limit case τ2 → +∞ and τ1 = 0.
However, some predictions cannot be matched, and others multiple times. The results for SSD on Color Boxes are displayed
in Table 3. Wa can therefore conclude that the first constraint parameter τ1 has a small influence on the metrics, both with
and without NMS. Nevertheless, a higher performance is reached in the balanced case, i.e., when τ1 → +∞.

H. Timing Analysis for SSD

As can be seen in Table 4, OT-based matches improve the epoch time (forward pass, compute the match cost, matching
algorithm, and backward pass; in blue) for SSD with the Hungarian algorithm by almost 50%. The difference is smaller for
DETR and variants as the models are proportionally heavier and the number of predictions smaller.



0 25 50 75 100 125 150
0.5
1.0
1.5
2.0
2.5

C
E

lo
ss

Training

Hungarian
OT

0 25 50 75 100 125 150
0.5
1.0
1.5
2.0
2.5

Validation

Hungarian
OT

0 25 50 75 100 125 150

0.4

0.8

1.2

1.6

G
IO

U
lo

ss

Hungarian
OT

0 25 50 75 100 125 150

0.4

0.8

1.2

1.6
Hungarian
OT

0 25 50 75 100 125 150
Epoch

0.1

0.2

0.3

0.4

0.5

L
1

lo
ss

Hungarian
OT

0 25 50 75 100 125 150
Epoch

0.1

0.2

0.3

0.4

0.5
Hungarian
OT

Figure 12. Training and validation unscaled loss curves for DETR on the Color Boxes dataset. The training loss is the average over the
epoch.
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Figure 13. Training and validation unscaled loss curves for Deformable DETR on the Color Boxes dataset. The training loss is the average
over the epoch.
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Figure 14. Influence of the number of Sinkhorn iterations on the final metrics on the Color Boxes dataset.

Matching τ1
with NMS w/o NMS

AP AR AP AR

Unb. OT 0.01 47.2 62.0 41.9 71.1
Unb. OT 0.1 47.7 63.7 44.7 72.3
Unb. OT 1 47.7 64.0 44.8 72.7
Unb. OT 10 47.8 63.8 45.0 72.6

OT (∞) 48.1 64.3 45.2 73.0

Table 3. Comparison of matching strategies on the Color Boxes dataset. SSD300 is evaluated both with and without NMS.

Epoch step OT Unb. OT Hung. 2-step

Preprocessing 6.3 ms idem idem idem
Forward pass 5.8 ms idem idem idem
Anchor gen. 54.2 ms idem idem idem
Match cost 4.2 ms idem idem idem
Matching 1.1 ms 1.5 ms 18.3 ms 2.3 ms
Backward pass 8.2 ms idem idem idem
Final losses 11.6 ms 11.6 ms 9.7 ms 9.7 ms

Table 4. Timing for each step in SSD300 on Color Boxes and a batch size of 16, computed with an Nvidia TITAN X GPU and Intel
Core i7-4770K CPU @ 3.50GHz. Likewise the models we built upon, we used Torchvision’s anchor generation implementation, which
extensively relies on heavy loops and could drastically be improved (not the focus of our work). The final losses timings are partially due
to the expensive hard-negative mining.

I. Color Boxes Dataset
This section provides a discussion of the Color Boxes synthetic dataset. It is split into 4,800 training and 960 validation

images of 500 × 400 pixels. Images have a gray background. We uniformly randomly draw between 0 and 30 rectangles of
20 different colors, which define the category of the rectangle. The dimension of the rectangles vary from 12 to 80 pixels and
are uniformly randomly rotated. They are placed such that the IoU between their bounding boxes is at most 0.25. A gaussian
noise of mean 0 and standard deviation 0.05 is added to each pixel value independently. Sample images are drawn in Fig. 15.



Figure 15. Sample images from the Color Boxes Dataset.

References
[1] Richard A. Brualdi. Combinatorial Matrix Classes. Encyclopedia of Mathematics and its Applications. Cambridge University Press,

2006. 2
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