Supplementary Material for 3D Highlighter: Localizing Regions on 3D Shapes
via Text Descriptions

We provide additional information about our method.
Appendix A shows additional results and experiments we
conducted with 3D Highlighter. Appendix B elaborates on
our implementation details, including how we accomplish
primary view selection, our network architecture, and our
optimization scheme. Appendix C shows highlights on ad-
ditional mesh and prompt combinations.

A. Additional Experiments and Details

Geometric edits. 3D Highlighter can be applied to cre-
ate localized geometric edits by performing extrusion,
stretching, deletion, and selection on localized regions (see
Fig. 14). For extrusion, we scale vertices in the localized
region along their normal vectors. With stretching, we shift
the vertices in the localized region by some constant value.
For deletion, we remove all vertices in the localized region
as well as the faces they make up. For selection, we render
only faces comprised entirely of vertices in the localized re-
gion. This application enables users to alter the geometry
of semantic regions of 3D objects using only text.

Multi-class semantic segmentation. Our method can be
used to obtain multi-class semantic segmentations of 3D
objects (see Fig. 15). This application takes advantage of
3D Highlighter’s ability to identify semantic regions. First
we localize each semantic class on the object individually.
Then we initialize a graph cut segmentation algorithm using
our predicted probabilities for all classes. This algorithm
outputs a segmentation of the vertices that is based on our
predictions, but is smooth and conforms to the geometry of
the mesh. This extension of 3D Highlighter allows users to
acquire multi-class semantic segmentations for meshes with
geometric parts not found in 3D datasets.

Viewpoint sampling. Our primary viewpoint sampling
procedure is tailored to our specific localization task allow-
ing it to produce more accurate highlights than other sam-
pling methods. We evaluate three different viewpoint sam-
pling procedures: ours (primary), anchor, and uniform sam-
pling (Fig. 16). Primary view sampling is described in 3.3
in the main paper. Our primary view sampling is a variant of
anchor view sampling (used in [25]), in which we sample all
n views from a Gaussian centered on the center view. The
anchor sampling approach uses the center (anchor) view in
each iteration along with n — 1 Gaussian samples. Uniform
sampling samples n random views uniformly, independent
of any center view. For the non-uniform approaches (pri-
mary and anchor) we evaluate each with two different cen-
ter views, once where the target selection region is visible
(blue) and once where it is not (orange).
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Figure 14. Geometric edits. Using regions selected with 3D
Highlighter, we can perform localized geometric edits such as ex-
trusion, stretching, deletion, and selection.
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Figure 15. Multi-class semantic segmentation. 3D Highlighter

can be used to obtain semantic segmentations of 3D objects with

unique geometric parts not found in any 3D dataset or annotations.
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We observe that our method produces similar results to
the anchor method when using a center view where the
text-specified target region is visible. However, when the
target region is not visible, our method achieves more de-
sirable results compared to anchor view sampling. This is
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Figure 16. Viewpoint sampling. Results using different center
view selection and sampling techniques for the target text: ‘neck-
lace’. Our primary view sampling procedure produces better re-
sults than uniform sampling for center views where the selection
region s (side on) and (facing away) visible. With a
, both our primary view method and the anchor view
method produce accurate selections. However, with a
our method produces more desirable results than the anchor
view approach.

because the anchor view sampling approach over-samples
views near the anchor view and when this anchor view does
not include the target region, it does not sample enough
views of that region to effectively localize. Our method
also produces better results than uniform sampling since
uniform sampling results in many views from angles where
the the shape is not recognizable to CLIP. By centering our
sampling on a view where the shape is recognizable, we
avoid impeding the optimization. Thus, our primary sam-
pling approach strikes a balance in that we sample widely
enough to sufficiently learn the target region while avoid-
ing problematic views that are unrecognizable to CLIP and
impede the optimization.

Impact of positional encoding. As specified in Sec. 3.1
in the paper, we choose not to use a positional encoding.
Although positional encoding has been shown to allow net-
works to learn high frequency features [38] and is com-
monly used in neural fields [44], our task actually benefits
from low frequency predictions. In Fig. 17, we optimize 3D
Highlighter on the target region ‘belt’ both with and without
a positional encoding. Using the positional encoding (right)
gives the network too much freedom. This creates noisy
highlight artifacts across the mesh. In extreme cases, the
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Figure 17. Positional encoding impact. We optimize 3D High-
lighter for the target localization ‘belt’ with (Positional Encoding)
and without (Standard) a positional encoding.
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CLIP Model ViT-L/141 ViT-B/16 T ViT-B/32 1
LSeg [21] 18.75 6.25 6.25
Text2LIVE [2] 43.75 31.25 12.5
Ours 81.25 43.75 25

Table 2. Highlight fidelity. We extend two image-based ap-
proaches LSeg [21] (segmentation) and Text2LIVE [2] (localized
editing) to the highlighting task and report CLIP R-Precision.

network can even hallucinate letters onto the mesh as seen
in the figure. Without the positional encoding (left), the
spectral bias results in a contiguous highlight region with-
out any highlight artifacts.

Quantitative evaluation details. In addition to our percep-
tual user study, we created a quantitative evaluation strategy
inspired by Dream Fields [16,28]. In our work, we build a
specialized CLIP R-Precision metric based on text-retrieval
with text prompts created for different localizations of se-
mantic regions. We evaluate both baselines and our 3D
Highlighter result rendered from the same view using this
specialized CLIP R-Precision. We run this evaluation on
the ViT-L/14, ViT-B/16, and ViT-B/32 CLIP models and ob-
serve that our method outperforms both baselines (Tab. 2).

Our CLIP R-Precision is defined as follows. We desig-
nate the set T}, to be a set of 10 possible target localiza-
tions. We also use 16 distinct meshes to create a dataset D
of 16 different mesh/target localization pairs in which each
mesh M; has a corresponding target localization L; where
L; € T),. To evaluate a method, we compute highlights for
all pairs (]\417 Lil), (MQ, Lig), ...(Ml(;, Liw) in D. Next,
we use CLIP to attempt to retrieve the original target lo-
calization that was used to generate each highlight. To do
so, we choose the target localization text in T}, that has the
highest CLIP similarity to the highlight. If this chosen tar-
get localization matches the target localization used to gen-
erate the highlight, then we consider that to be a successful
retrieval. To obtain the CLIP R-Precision for a method, we
report the percentage of mesh/target localization pairs in D
that were successfully retrieved.

As specified above, we report the CLIP R-Precision for
all methods using the ViT-L/14, ViT-B/16, and ViT-B/32
CLIP models. Additionally, since our highlight is repre-
sented in 3D, we have to render our highlighted mesh into
2D. We do so using a different renderer than the one we use
during optimization. By evaluating on different CLIP mod-
els and using a new renderer, we show that our highlight
localizations are robust across different CLIP models and
renderers.

As shown in Tab. 2, our method achieves higher CLIP
R-Precision than both baselines. In addition to these quanti-
tative results, Fig. 18 shows qualitative differences between
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Figure 18. Qualitative Evaluation Examples. Highlights on dif-
ferent meshes and prompts for LSeg [21], Text2LIVE [2], and 3D
Highlighter (ours). Both baselines struggle on many mesh/prompt
combinations. LSeg often outputs no selection region (as seen in
the LSeg horse).
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Figure 19. CLIP understanding. The result of optimizing CLIP
towards ‘headphones’ (right) results in a more ‘ear-like’ result
compared to optimizing towards ears (left). The

between the ‘ears’ text prompt and both highlighted meshes also
confirms that CLIP’s semantic association may not always corre-
spond with the user’s semantic association.

the highlights of the different methods. From this figure, we
can see that 3D Highlighter produces more accurate local-
izations than the baselines. Both Text2LIVE and LSeg also
struggle to produce contiguous highlight regions. Addition-
ally, LSeg frequently produces empty localization regions
such as seen in the first example in the top left corner of
Fig. 18. The results of the baselines demonstrate the diffi-
culty of the highlighter task.

CLIP understanding. 3D Highlighter relies on CLIP for
supervision and thus is limited by biases in CLIP. There
are cases where CLIP’s understanding does not align with
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Figure 20. Optimization sensitivity. We observe that the results
of 3D Highlighter are robust to different seeds when using certain
target prompts (such as shoes, left); while other target prompts
may produce more variable results (such as necklace, right).

human visual understanding of where the region should be
localized. In Fig. 19, we use 3D Highlighter to localize
the region ‘ears’ (left) on a bunny mesh. To a human ob-
server, it is clear that the localization does not contain the
bunny’s ears: instead, the localization is a region on the side
of the bunny’s head. This is likely a result of CLIP more
strongly associating ears with being placed on the side of a
head than on top. In such cases, 3D Highlighter will pro-
vide poor localizations since it is based on CLIP’s prefer-
ences. However, if we use 3D Highlighter to localize the
region ‘headphones’ (right) on the same bunny mesh, we
get a localization that has good visual correspondence to
both ‘headphones’ and ‘ears’ (since the ideal localization
for these two prompts on a bunny should look very similar).
If we measure the CLIP similarity of both results to the text
‘gray bunny with highlighted ears’, we find that the ‘ears’
localization has higher CLIP similarity even though it has
less visual correspondence. This explains why the ‘ears’
target region does not produce a localization like the one
produced for the target region ‘headphones’. Thus, when
CLIP’s biases lead to poor results on a given target region,
we can often still obtain a good localization by running 3D
Highlighter on a different specification of the target region.

Optimization consistency and sensitivity. Depending on
the combination of mesh and target localization region, 3D
Highlighter’s optimization can vary in its sensitivity to non-
determinism and thus its consistency (Fig. 20). For some
combinations of meshes and prompts, the supervision sig-
nal is very strong. As such, non-determinism has little to no
impact and the optimization produces nearly identical re-
sults every run. However, for some mesh and prompt com-
binations, the supervision signal is weaker. As a result, the
optimization is more sensitive to non-determinism and we
see that the highlighted regions can differ significantly be-
tween runs.

View consistency. The viewing angles used during opti-
mization are sampled from a Gaussian distribution centered
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at the primary view with a standard deviation of 0, = 5
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Figure 21. Perceptual study examples. We show visual examples
from our perceptual study for the question “a vase with a region
corresponding to a hat highlighted.”
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Figure 22. View consistency. Our highlights are view consistent.

Setting Direct Noblend Noaugs Posenc Ours

VIiT-L/14 | 375 37.5 25 18.75  81.25
ViT-B/16 12.5 18.75 6.25 12.5 43.75
ViT-B/32 0 0 0 6.25 25

Table 3. Quantitative ablation study. We report a quantitative
ablation of the components of our method using CLIP R-Precision.

(azimuth) and 0. = 7 (elevation). Due to our view sam-
pling, 3D Highlighter sees all sides of the shape with rea-
sonable frequency and thus produces view-consistent local-
izations (see Fig. 22).

Quantitative ablation. In addition to our qualitative abla-
tion in Fig. 7, we report a quantitative ablation using CLIP
R-Precision on a collection of mesh and prompt combina-
tions and observe that our full system produces the highest
scores (Tab. 3).

B. Implementation

Choice of primary view. We use CLIP to automatically se-
lect our primary view (see Fig. 23). To sample our views
during the rendering step, we need to choose a primary view
to center our view sampling distribution on. We want this
view to correspond with CLIP’s understanding of the un-
derlying object as well as the target localization region. As
such, we sample views uniformly around the object and for
each rendered view, we encode it with CLIP and compare
it to the encoded text target ‘A 3D render of a gray [object]

z;
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Figure 23. Automatic primary view selection. We select our pri-
mary view by sampling views uniformly and choosing the view
with the highest CLIP similarity to the text target. We show sam-
pled views and their CLIP similarity score to the target prompt.

with highlighted [target region]’. We then choose the view
with the highest CLIP similarity to the text target to be our
primary view.

Neural highlighter architecture and implementation.
Our neural highlighter is represented by an MLP with 6
linear layers. The input dimension is 3, encoding (z,y, 2)
coordinates. Each linear layer has a width of 256. After
each of the first 5 linear layers we apply a ReLU activation
followed by a layer norm. After our 6th and final linear
layer, we instead apply a softmax activation that converts
our output into a vector of probabilities. Thus, our final
layer outputs an n dimensional tensor where n is the number
of classes. Each element of the output tensor corresponds
to the probability of the vertex belonging to that class. For
the standard highlighter task, there are only 2 classes: target
region and not target region. Thus, there are 2 elements in
the output vector and we can use the element of the output
vector corresponding to the probability of belonging to the
target region as the highlight probability described in the
main paper.

Optimization. We optimize the parameters of our neural
highlighter using PyTorch’s Adam optimizer with a con-
stant learning rate of 1e~*. We train for 2500 iterations on
a single A40 GPU which takes around 5 minutes to com-
plete. See Fig. 24 for a visualization of the progression of
predictions during the optimization process.

C. More Visual Results

We show highlights for additional combinations of
meshes and prompts: Fig. 25 depicts highlights on animal
meshes while Fig. 26 shows highlights on object meshes.
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Figure 24. Optimization visualization. We optimize 3D Highlighter on a mesh of a dog with the target localization ‘hat’ and visualize
the predicted highlighted region at five steps throughout the optimization. We also report the CLIP similarity score at each step.
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Figure 25. Animal gallery. Example highlights on meshes of dogs, goats, camels, horses, pigs, humans, and robots.
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Figure 26. Object gallery. Example highlights on meshes of candles, vases, instruments, and lamps.



