
Supplement to Objaverse: A Universe of Annotated 3D Objects

A. Instance Segmentation with CP3D

Model. We use the Mask-RCNN [5] model of [1] with
a ResNet-50 backbone [6]; no additional changes to their
model are made. Instead of a softmax activation, the
model uses a Gumbel activation, given by the formula
η(q) = exp(− exp(−q)), to transform logits into proba-
bilities. More details about the model and activation can be
found in [1].

Training. We take the pretrained ResNet-50 Mask-
RCNN checkpoint of [1] and finetune the model for 24
epochs with the CP3D augmentation integrated into the
training pipeline. We use a batch size of 64 and a learning
rate of 0.002.

Additional Results Here we report detection metrics in
addition to the segmentation results reported in the paper in
Table 1. Notably, we see an impressive gain of two points
on AP for rare categories.

Method AP APr APc APf

GOL [1] 27.5 19.8 27.2 31.2
GOL + 3DCP 28.9 21.8 28.7 32.2

Table 1. Detection results for bounding box AP category met-
rics. APr, APc, and APf measure AP for categories that are rare
(appear in 1-10 images), common (appear in 11-100 images), and
frequent (appear in >100 images), respectively.

B. Open-Vocabulary ObjectNav

Model. The agent’s embodiment is a simulated LoCoBot
[2]. The action space consists of six actions: MOVEA-
HEAD, ROTATELEFT, ROTATERIGHT, END, LOOKUP, and
LOOKDOWN. Given the excellent exploration capabilities
of EmbCLIP [3,7], we opt to keep the same overall architec-
ture, just replacing the learned embedding for target types
in prior work by a linear projection of the text branch out-
put of CLIP for the target description, as shown in Fig. 1.
Additionally, in order to provide more information about
the target and the current visual input, we increase the re-
spective internal representations for each modality from the
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Figure 1. Open-Vocabulary ObjNav Model overview. The Ob-
jectNav model (employing an RNN) uses the high-level architec-
ture illustrated here, where it receives features from the visual and
target object description encoders, besides previous hidden units
and actions as input, and outputs the next action.

original 32-D to 256-D. Note that our model does not em-
ploy the alternative zero-shot design described in [7], where
the target description is not observed by the agent’s RNN.
Given the scale of OBJAVERSE-LVIS, we can train agents
with good generalization following a more standard design.

Training. For training, we use ProcTHOR to procedurally
generate 10,080 houses. Each house has up to three rooms,
entirely populated with OBJAVERSE-LVIS assets except for
structural components like doors and windows, which are
inherited from ProcTHOR [3]. We sample targets corre-
sponding to LVIS categories for which a single instance is
present in the scene, resulting in a total of 9,421 unique as-
sets corresponding to 262 categories targeted during train-
ing. Training uses DD-PPO [11] and is distributed across 28
GPUs on 7 AWS g4dn.12xlarge machines, with each GPU
hosting 360 houses and the subset of OBJAVERSE-LVIS
assets populating them. The training hyperparameters are
identical to the ones in [3], and the 262 training target cate-
gories are listed in Table 2 and Table 3, respectively.

Testing. For testing, we sample 150 episodes for each of
30 target categories, which are a subset of the training tar-
get categories. The resulting 4,500 episodes are sampled
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Hyperparameter Value

Discount factor (γ) 0.99
GAE parameter (λ) 0.95
Value loss coefficient 0.5
Entropy loss coefficient 0.01
Clip parameter (ϵ) 0.1
Rollout horizons 32, 64, 128
Rollout timesteps 20
Rollouts per minibatch 1
Learning rate 3 · 10−4

Optimizer Adam [8]
Gradient clip norm 0.5

Table 2. Training hyperparameters for Open-Vocabulary Ob-
jectNav.

from 151 procedural houses not seen during training. The
30 testing target categories are listed in Table 4. For the re-
sults provided in the main paper, the agent is trained for just
18 million simulation steps, but the resulting policy already
shows reasonable performance given the variety of targets
and scenes. Improved performance can be achieved with
extended training (e.g., after approx. 460 million steps, the
success rate is 33.0%).

C. Composition

Human subjects data. A portion of the data included in
OBJAVERSE is generated by human subjects (i.e. crowd-
workers recruited through Amazon’s Mechanical Turk plat-
form) as outlined in Section 3 and detailed below. The col-
lection process has been reviewed and approved for release
by an Institutional Review Board.

Data collection interfaces. Human annotators were used
to provide the category labels for OBJAVERSE-LVIS as de-
scribed in Section 3. This task was accomplished by first
creating sets of 500 candidate objects for each LVIS cate-
gory. These candidate sets included objects visually resem-
bling the target category (as ranked by the CLIP features of
their thumbnail images), as well as instances whose meta-
data contained terms with a high similarity to the target cat-
egory (as ranked by their GloVe vector similarity [9]). Can-
didate objects were shown to crowdworkers nine at a time,
and they were asked to mark objects that were members of
the category, as shown in Figure 2 a. In addition to the vi-
sual reference for each object, annotators also had access
to the object’s name and were encouraged to use this when
helpful. Human annotators were also used to rate the rela-
tive diversity of of 3D objects generated by models trained
using OBJAVERSE and ShapeNet. The user interface and

(a) Screenshot of OBJAVERSE-LVIS categorization task.

(b) Screenshot of relative diversity rating task.

Figure 2. Data collection interfaces.

instructions for this task are shown in Figure 2 b. Two sets
of nine objects generated by each model were shown with
random left-right orientations, and workers were asked to
choose the set exhibiting the greater variety in appearance.

D. Estimating Coverage

We use OpenAI’s CLIP ViT-B/32 model to estimate the
categorical coverage of the objects in OBJAVERSE. Specifi-
cally, for each object, we compute the CLIP image embed-
ding from the thumbnail and the cosine similarity between
an text embedding of each WordNet entity [4]. The entity



Bible, Christmas tree, Rollerblade, alligator, ambulance, amplifier, arctic (type of shoe), armor,
banner, barbell, barrel, barrow, baseball bat, basketball, bat (animal), bath mat, beachball, bear, bed,
beetle, bench, beret, bicycle, binder, binoculars, bird, blackberry, bookcase, boot, bottle, bowling ball,
bullhorn, bunk bed, bus (vehicle), butterfly, cab (taxi), cabinet, canoe, cape, car (automobile), card,
cardigan, carnation, cart, cassette, cat, chair, chaise longue, chicken (animal), clothes hamper, coatrack,
coffee table, cone, convertible (automobile), cornice, cow, cowboy hat, crab (animal), crate, crossbar,
cube, cylinder, deck chair, deer, desk, dinghy, dirt bike, dog, dollhouse, doormat, dove, drawer, dresser,
duckling, dumbbell, dumpster, easel, elephant, elk, fan, ferret, file cabinet, fireplace, fireplug,
fishing rod, flag, flagpole, flamingo, flip-flop (sandal), flipper (footwear), foal, football (American),
footstool, forklift, frog, futon, garbage, gargoyle, giant panda, giraffe, golf club, golfcart, gondola (boat),
goose, gorilla, gravestone, grill, grizzly, grocery bag, guitar, handcart, hat, heater, hockey stick, hog,
horse, horse carriage, jeep, kayak, keg, kennel, kitchen table, kitten, knee pad, ladder, ladybug,
lamb (animal), lamp, lamppost, lawn mower, legging (clothing), lion, lizard, locker, log, loveseat,
machine gun, mailbox (at home), manhole, mascot, mast, milk can, minivan, monkey, mop, motor,
motor scooter, motor vehicle, motorcycle, mushroom, music stool, nut, ostrich, owl, pajamas,
parasail (sports), parka, penguin, person, pet, pew (church bench), piano, pickup truck, pinecone,
ping-pong ball, playpen, pole, polo shirt, pony, pool table, power shovel, propeller, pug-dog, pumpkin,
rabbit, radiator, raincoat, ram (animal), rat, recliner, refrigerator, rhinoceros, rifle, road map,
rocking chair, router (computer equipment), runner (carpet), saddle (on an animal), saddle blanket,
saddlebag, sandal (type of shoe), scarecrow, scarf, sculpture, seabird, shark, shepherd dog, shield, shirt,
shoe, sink, skateboard, ski parka, skullcap, snake, snowmobile, soccer ball, sock, sofa, sofa bed,
solar array, sparkler (fireworks), speaker (stero equipment), spear, spider, sportswear, statue (sculpture),
step stool, stepladder, stool, subwoofer, sugarcane (plant), suit (clothing), suitcase, sunhat, surfboard,
sweat pants, sweater, swimsuit, table, tape measure, tarp, telephone pole, television camera, tennis ball,
tennis racket, tights (clothing), toolbox, tote bag, towel, trailer truck, trampoline, trash can, tricycle,
trousers, truck, trunk, turtle, tux, underdrawers, vacuum cleaner, vending machine, vest, wagon wheel,
water ski, watering can, wet suit, wheel, window box (for plants), wok, wolf, and wooden leg.

Table 3. Training target types for Open-Vocabulary ObjectNav.

Christmas tree, bed, bench, blackberry, chair, chicken (animal), dog, easel, elk, fireplug, forklift, garbage,
gargoyle, guitar, mascot, motor, penguin, pony, pool table, radiator, rifle, scarf, sock,
speaker (stero equipment), sportswear, sweat pants, trash can, trunk, wet suit, and wheel.

Table 4. Testing target types for Open-Vocabulary ObjectNav.

with the maximum cosine similarity is then assigned as the
object’s entity. The WordNet entities are textually encoded
in the form, “a {entity} is a {definition}”, which is loosely
inspired by CuPL [10]. For instance, we might have “a bat
is a nocturnal mouselike mammal with forelimbs modified
to form membranous wings and anatomical adaptations for
echolocation by which they navigate” or “a bat is a club
used for hitting a ball in various games”. Computing the
nearest WordNet entity for each object gave us an estimated
coverage of 20.8K entities.
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