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A. Proxy task class splits
We use proxy tasks to apply the meta-tuning ideas, so

we generate sub-splits in the base classes. In this context,
we select some base classes to mimic novel classes to con-
duct the proxy task. We summarize the list of proxy Pascal
VOC classes on Table 1. The list of selected proxy novel
classes for the MS-COCO dataset is as follows: {"skis",
"tennis racket", "scissors", "truck", "baseball bat", "hand-
bag", "carrot", "mouse", "parking meter", "apple", "knife",
"microwave", ""refrigerator", "cake", "zebra"}.

B. Algorithm
We summarize the main meta-tuning procedure in Algo-

rithm 1. We can divide this algorithm into three parts: (i)
model initialization and parameter sampling, (ii) instance
sampling and mAP calculation, (iii) mAP normalization and
RL steps.

1) Model initialization and parameter sampling. This
algorithm firstly initializes the base proxy detection model
weights for the proxy task and sample ρ value from normal
distributions. The base proxy detection model represents the
object detection model trained using the Dp-pretrain dataset.

2) Instance sampling and mAP calculation. The proposed
algorithm samples new instances from the proxy fine-tuning
dataset Dp-support, and calculates the mean average precision
scores on proxy validation dataset Dp-query after a certain
number of iterations. The algorithm repeats this process for
N times.

3) mAP normalization and RL steps. The proposed al-
gorithm normalizes the mAP scores, selects the maximum
score as the reward value among the normalized APs, and
applies a single REINFORCE step.

C. Additional Experimental Results
In this section, we share detailed experimental compari-

son results for Pascal VOC and MS COCO datasets.

Comparison to fine-tuning based FSOD and G-FSOD

Algorithm 1 Meta-tuning Loss Function Learning

Input: Pre-trained model minit, proxy fine-tuning dataset
Dp-support, proxy validation dataset Dp-query, number of rho
trials N , maximum iteration number M

iteration_index = 1
repeat

Initialize minit and sample new ρ
for rho_index = 1 to N do

Sample new fine-tuning images from Dp-support
Take minit, run all iter. using current samples
Calculate mAP[rho_index] on Dp-query

end for
Normalize mAP scores
Get max normalized AP as a reward
Make a single REINFORCE step
iteration_index += 1

until iteration_index = M

methods on Pascal VOC. We first present the detailed Pas-
cal VOC comparisons for each split and shot with only novel
classes in Table 2, and the detailed comparisons with all
classes in Table 3. The experimental results show that the
meta-tuning approach significantly improves the strong fine-
tuning based few-shot detection baselines on the Pascal VOC
benchmark. We provide complementary visual results of the
MPSR+Meta-ScaledDynamic+Aug method using the Pascal
VOC split-3/10-shot setting in Figure 1. We also present
examples from the visual results of the DeFRCN+Meta-
ScaledDynamic+Aug method using the Pascal VOC split-
2/10-shot setting in Figure 2.

Comparisons to meta-learning based FSOD and G-FSOD
on Pascal VOC. We present the detailed Pascal VOC com-
parisons with meta-learning based methods in Table 4 and
Table 5 for novel-only and all-classes settings, respectively.
Since the most of the meta-learning methods do not share
G-FSOD results, we are able to compare against a more
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Proxy-base classes (Cp-base) Proxy-novel classes (Cp-novel)
Split-1 Split-2 Split-3 Split-1 Split-2 Split-3

aeroplane bicycle aeroplane person motorbike horse
bicycle bird bicycle pottedplant person person

boat boat bird sheep sheep pottedplant
bottle bus bottle train train train

car car bus tvmonitor tvmonitor tvmonitor
cat cat car

chair chair chair
diningtable diningtable cow

dog dog diningtable
horse pottedplant dog

Table 1. Proxy task class splits for Pascal VOC.

Split 1 Split 2 Split 3Method/Shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN [20] (ICCV’19) 15.2 20.3 29.0 25.5 28.7 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1
TFA-fc [15] (ICML’20) 36.8 29.1 43.6 55.7 57.0 18.2 29.0 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2

TFA-cos [15] (ICML’20) 39.8 36.1 44.7 55.7 56.0 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8
MPSR [17] (ECCV’20) 37.2 43.6 50.9 53.7 60.2 24.8 28.1 38.0 39.8 45.9 37.3 40.0 43.9 47.8 50.1

Ret. R-CNN [4] (CVPR’21) 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1
TFA+H [23] (CVPR’21) 45.1 44.0 44.7 55.0 55.9 23.2 27.5 35.1 34.9 39.0 30.5 35.1 41.4 49.0 49.3
FSCE [14] (CVPR’21) 37.6 44.7 46.9 52.2 60.3 24.5 30.1 38.2 40.4 45.9 25.4 34.2 42.3 48.7 50.3
FADI [1] (NeurIPS’21) 50.3 54.8 54.2 59.3 63.2 30.6 35.0 40.3 42.8 48.0 45.7 49.7 49.1 55.0 59.6

LVC [9] (CVPR’22) 36.0 40.1 48.6 57.0 59.9 22.3 22.8 39.2 44.2 47.8 34.3 43.4 42.9 52.0 54.5
LVC-PL [9] (CVPR’22) 54.5 53.2 58.8 63.2 65.7 32.8 29.2 50.7 49.8 50.6 48.4 52.7 55.0 59.6 59.6

DeFRCN [13] (CVPR’21) 53.7 59.5 61.2 65.7 66.6 32.3 42.0 49.5 52.4 53.4 53.6 56.2 56.9 61.9 62.3

MPSR+Meta-Static 36.7 47.0 52.1 53.8 60.8 25.3 31.6 38.4 40.8 46.9 38.3 39.7 44.8 47.2 50.1
MPSR+Meta-Dynamic 40.4 47.5 51.9 54.9 60.5 25.6 31.7 38.5 40.6 46.7 37.6 40.2 44.7 49.1 50.3

MPSR+Meta-ScaledDynamic 41.5 47.9 52.7 55.4 60.9 25.7 32.2 38.9 40.8 46.8 38.5 40.9 45.9 49.0 51.0
MPSR+Aug 39.5 47.1 53.2 54.9 59.5 26.2 31.0 39.7 41.8 47.8 38.0 37.8 45.2 48.4 50.9

MPSR+Meta-Static+Aug 40.9 47.6 53.6 54.7 60.2 26.5 31.6 38.9 42.2 47.3 38.7 38.1 45.8 48.2 50.8
MPSR+Meta-Dynamic+Aug 41.0 47.5 53.8 55.2 60.2 26.4 32.2 39.8 42.7 48.5 38.9 39.1 46.0 48.8 51.3

MPSR+Meta-ScaledDynamic+Aug 41.8 48.7 54.2 55.7 61.1 26.5 32.7 40.0 42.5 48.7 39.0 40.4 46.2 49.6 51.2

DeFRCN+Meta-ScaledDynamic+Aug 58.4 62.4 63.2 67.6 67.7 34.0 43.1 51.0 53.6 54.0 55.1 56.6 57.3 62.6 63.7

Table 2. Comparison to fine-tuning based FSOD methods on the Pascal VOC dataset, with only novel classes. The best and the second-best
results are marked with red and blue. MPSR+Meta-Static, MPSR+Meta-Dynamic, and MPSR+Meta-ScaledDynamic represent meta-tuning
results.

limited number of meta-learning methods than FSOD. The
experimental results (Table 4) show that our DeFRCN+Meta-
ScaledDynamic+Aug method obtains the best results in all
of the FSOD cases, except for the Split-2/1-shot setting. In
the G-FSOD experiments (Table 5), it is observed that the
proposed meta-tuning approach obtains the state-of-the-art
results with a clear margin against existing meta-learning
based methods.

Comparisons to meta-learning based FSOD and G-FSOD
on MS-COCO. We compare our results with meta-learning
based methods on the MS-COCO dataset and share the
obtained results in Table 6. In this table, we are able to
report a rather limited number of meta-learning methods
to compare the G-FSOD results since most meta-learning

based methods do not share G-FSOD results on the MS-
COCO dataset. In FSOD experiments, we also observe that
our DeFRCN+Meta-ScaledDynamic+Aug method obtains
higher results than several recently published meta-learning
based methods. We additionally observe major improve-
ments in terms of HM scores in the G-FSOD setting, similar
to the improvements obtained on the Pascal VOC dataset.

D. Implementation and runtime
We run our MPSR and DeFRCN experiments on a server

with 4 Nvidia Tesla V100 32GB GPUs. The base MPSR
model training to be used during fine-tuning takes 0.25 days
for Pascal VOC and 0.45 days for MS COCO datasets. Since
the base models used for the proxy tasks contain fewer



Split-1 Split-2 Split-3Method/Shot 1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN [20] (ICCV’19) 24.9 31.4 40.3 37.6 41.0 22.1 31.3 39.1 43.0 47.5 30.8 32.3 40.5 52.2 51.7
TFA-fc [15] (ICML’20) 50.4 42.6 56.2 65.4 66.1 29.7 42.4 47.0 49.0 52.1 41.3 47.4 55.6 60.6 61.6

TFA-cos [15] (ICML’20) 53.1 49.5 57.1 65.4 65.3 36.3 40.0 47.6 48.6 52.2 44.5 48.5 55.9 61.2 61.4
MPSR [17] (ECCV’20) 45.8 52.5 59.3 61.8 65.5 36.0 39.7 49.8 51.7 56.9 47.6 49.9 54.5 58.1 60.0
FSCE [14] (CVPR’21) 50.7 56.5 58.1 61.6 66.1 36.5 42.4 49.8 51.5 55.8 38.2 47.4 54.6 59.9 61.1

Ret. R-CNN [4] (CVPR’21) 55.6 58.5 58.6 64.5 66.2 34.3 41.5 49.2 51.0 54.0 44.1 51.6 56.4 61.9 62.2
DeFRCN [13] (CVPR’21) 63.3 67.3 68.1 71.1 71.2 45.9 54.7 60.3 62.8 63.1 63.7 65.4 65.5 68.8 69.2

MPSR+Meta-Static 45.7 56.4 60.3 62.1 66.1 36.7 43.7 50.3 52.7 57.9 48.6 51.2 55.5 57.8 60.1
MPSR+Meta-Dynamic 50.2 57.2 60.6 63.3 67.0 37.0 43.9 50.4 52.5 57.8 47.9 51.8 55.4 59.1 60.2

MPSR+Meta-ScaledDynamic 51.0 57.3 60.9 63.3 67.1 37.1 44.1 50.7 52.5 57.7 48.7 52.1 56.1 59.0 60.5
MPSR+Aug 49.9 56.2 61.5 63.0 66.5 37.4 43.0 51.4 53.6 58.6 48.1 49.3 55.7 58.7 60.8

MPSR+Meta-Static+Aug 51.3 56.9 62.0 62.8 66.9 37.7 43.5 50.7 53.7 58.1 48.6 49.5 55.9 58.5 60.3
MPSR+Meta-Dynamic+Aug 51.3 56.8 62.1 63.3 67.0 37.8 44.2 51.7 54.3 59.3 48.9 50.5 56.5 59.0 61.2

MPSR+Meta-ScaledDynamic+Aug 51.9 57.6 62.4 63.7 67.6 37.8 44.9 51.9 54.2 59.4 49.2 51.9 56.7 59.7 61.1

DeFRCN+Meta-ScaledDynamic+Aug 66.7 69.3 69.8 72.2 72.1 47.7 55.8 61.8 63.9 63.7 64.9 65.8 66.2 69.7 70.2

Table 3. Comparison to fine-tuning based G-FSOD methods on the Pascal VOC dataset, with both base and novel classes. The best and the
second-best results are marked with red and blue. The harmonic mean (HM) of the base and novel class mAPs is used for the calculation.

Method/Shot Novel Set 1 Novel Set 2 Novel Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

ML

M. R-CNN [20] (ICCV’19) 19.9 25.5 35.0 45.7 51.5 10.4 19.4 29.6 34.8 45.4 14.3 18.2 27.5 41.2 48.1
M. R-CNN* [20] (ICCV’19) 16.8 20.1 20.3 38.2 43.7 7.7 12.0 14.9 21.9 31.1 9.2 13.9 26.2 29.2 36.2

FSRW [8] (ICCV’19) 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 39.2 19.2 21.7 25.7 40.6 41.3
MetaDet [16] (ICCV’19) 18.9 20.6 30.2 36.8 49.6 21.8 23.1 27.8 31.7 43.0 20.6 23.9 29.4 43.9 44.1
FsDet [19] (ECCV’20) 25.4 20.4 37.4 36.1 42.3 22.9 21.7 22.6 25.6 29.2 32.4 19.0 29.8 33.2 39.8
TIP [10] (CVPR’21) 27.7 36.5 43.3 50.2 59.6 22.7 30.1 33.8 40.9 46.9 21.7 30.6 38.1 44.5 50.9

DCNet [7] (CVPR’21) 33.9 37.4 43.7 51.1 59.6 23.2 24.8 30.6 36.7 46.6 32.3 34.9 39.7 42.6 50.7
CME [11] (CVPR’21) 41.5 47.5 50.4 58.2 60.9 27.2 30.2 41.4 42.5 46.8 34.3 39.6 45.1 48.3 51.5

QA-FewDet [5] (ICCV’21) 41.0 33.2 35.3 47.5 52.0 23.5 29.4 37.9 35.9 37.1 33.2 29.4 37.6 39.8 41.5
KFSOD [22] (CVPR’22) 44.6 - 54.4 60.9 65.8 37.8 - 43.1 48.1 50.4 34.8 - 44.1 52.7 53.9

FCT [6] (CVPR’22) 49.9 57.1 57.9 63.2 67.1 27.6 34.5 43.7 49.2 51.2 39.5 54.7 52.3 57.0 58.7
Meta-DETR [21] (TPAMI’22) 40.6 51.4 58.0 59.2 63.6 37.0 36.6 43.7 49.1 54.6 41.6 45.9 52.7 58.9 60.6

Ours DeFRCN+Meta-ScaledDynamic+Aug 58.4 62.4 63.2 67.6 67.7 34.0 43.1 51.0 53.6 54.0 55.1 56.6 57.3 62.6 63.7

Table 4. Comparison to meta-learning based FSOD methods on the Pascal VOC dataset, with only novel classes. The best and the second-best
results are marked with red and blue. MPSR+Meta-Static, MPSR+Meta-Dynamic, and MPSR+Meta-ScaledDynamic represent meta-tuning
results. ML represents the meta learning based methods.

classes and demand fewer iterations, the training of the
MPSR model takes 0.1 days in Pascal VOC and 0.6 days in
MS COCO datasets for the proxy-base classes. RL training
for meta-tuning using the final setting takes 0.05 days for
Pascal VOC splits and 0.5 days for the MS COCO dataset.
Finally, we note that meta-tuning operations do not incur any
overhead during the fine-tuning for novel classes.
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Figure 1. Randomly sampled MPSR+Meta-ScaledDynamic+Aug object detection results for the Pascal VOC dataset Split-3/10-shot
experiment. Base class instance candidates are marked with green, and novel class instance candidates are marked with red color. (Best
viewed in color.)



Figure 2. Randomly sampled DeFRCN+Meta-ScaledDynamic+Aug object detection results for the Pascal VOC dataset Split-2/10-shot
experiment. Base class instance candidates are marked with green, and novel class instance candidates are marked with red color. (Best
viewed in color.)
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