
Learning Detailed Radiance Manifolds for High-Fidelity and 3D-Consistent
Portrait Synthesis from Monocular Image

(Supplementary Material)

I. More Implementation Details

I.1. Data Preparation

We align all images in FFHQ [10] and CelebA-HQ [9]
using the detected facial landmarks following [5]. Specifi-
cally, we first use an off-the-shelf landmark detector [1] to
extract 5 facial landmarks for each image. Then, we resize
and crop the images by solving a least square problem be-
tween the detected landmarks and canonical 3D landmarks
from the average shape of a 3D face model [20]. Camera
poses of the images are extracted using a 3D face recon-
struction model [6].

I.2. Network Structure

The structure of the detail manifolds reconstructor is
shown in Fig. V. It consists of two sub-networks. A detail
encoder Edetail and a super-resolution module U .

Detail encoder Edetail. The detail encoder receives the
concatenation of the input image Î and the difference map
Î − Iw, and predicts a low-resolution feature voxel V (see
Fig. V (a)). It consists of several 2D downsampling blocks,
followed by a 2D convolution to project the low-resolution
2D feature map to 3D voxel. A 3D U-Net structure with
skip connections is then applied, followed by several 3D
resblocks to obtain the final low-resolution feature voxel V .

Super-resolution module U . The super-resolution mod-
ule takes the low-resolution feature map F lr

i derived from
each low-resolution feature manifold as input, and produces
a high-resolution feature map Fhr

i which will be later pro-
jected back to the surface manifolds (see Fig. V (b)). It
consists of two upsampling blocks, and each block contains
two 2D convolutions.

I.3. Intersection Calculation Details

The efficient GRAM requires to calculate ray-manifold
intersections for manifold rendering following [5]. To ac-
celerate the efficiency of this process, we calculate ray-
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Figure I. Illustration of our intersection calculation. Ray-manifold
intersections are first calculated at 1/4 resolution of the final image
(i.e. blue dots), and then go through bilinear upsampling to obtain
dense intersections at the final resolution (i.e. gray dots).

manifold intersections at 1/4 resolution of the final image,
as depicted in Fig. I.

Specifically, we first generate viewing rays at a reso-
lution of 64 × 64, and calculate their intersections with
each surface manifold produced by the manifold predictor
M following [5]. Then, we upsample the obtained low-
resolution intersection grid on each manifold via bilinear
interpolation to obtain dense intersections at the final reso-
lution (i.e. 256×256). In this way, only the low-resolution
intersections obtained in the first step require forwarding the
manifold predictor, which largely reduces the computation
cost compare to directly calculating intersections at the final
resolution. Since the learned surface manifolds for human
faces have small curvature and are nearly planar at local re-
gions (see illustration in [5]), the intersections obtained via
the bilinear upsampling are close to the ground truth and
have a minor influence on the final synthesis results.

I.4. More Training Details

Pretraining efficient GRAM. We follow [5] to train the
efficient GRAM on FFHQ dataset at a resolution of 256 ×
256. During training, we randomly sample latent code z
from the normal distribution and camera pose θ from the
estimated distribution of the training data and send them to
the efficient GRAM to generate corresponding images. The
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manifold predictor M is initialized following [5]. The tri-
plane generator Ψ and the MLP-based decoder m are initial-
ized following [3]. The synthesized images, together with
randomly sampled real images from the training data, are
sent into an extra discriminator [11] for loss computation.
We adopt the non-saturating GAN loss with R1 regulariza-
tion [15] to learn the efficient GRAM and the discriminator.
We also enforce the pose regularization in [5] to ensure that
the learned geometries are reasonable.

We use the Adam optimizer [12] with β1 = 0 and
β2 = 0.99. The learning rates are set to 2.5e − 3 for the
tri-plane generator and the MLP-based decoder, 2e − 5 for
the manifold predictor, and 1e−3 for the discriminator. The
loss weights for the R1 regularization and the pose regular-
ization are set to 10 and 30, respectively. We trained the
efficient GRAM for 150K iterations with a batchsize of 32.
Training took 2 days on 4 NVIDIA Tesla V100 GPUs with
32GB memory.

General inversion stage. During this stage, we fix the
pre-trained efficient GRAM and learn the image inverter
Ew. The image inverter is initialized following [26]. We
adopt the multi-level reconstruction loss Lr for faithful im-
age reconstruction (i.e. Eq.(6) in the main paper), and the
minimal variation loss Ld−reg proposed in [26] to ensure
that each wi, i = 1, ..., L in the predicted w+ latent code
are close to each other. Besides, we apply a regularization
on the predicted latent code w+ to ensure that it falls in a
semantically meaningful latent space:

Lw+ = ||w+ − w̄+||2, (I)

where w̄+ is the average latent code of the W+ space com-
puted using 10K randomly sampled z.

We use the Adam optimizer with β1 = 0.9 and β2 =
0.999. The initial learning rate for the image inverter is
3e − 4, and decreases to 6e − 5 after 100K iterations. The
balancing weights for the three terms in Lr are set to 1e−2,
1, and 4e − 2, respectively. The weights for Ld−reg and
Lw+ are 1e − 3 and 1e − 4, respectively. The network is
trained for 150K iterations with a batchsize of 32, which
took 2 days on 4 NVIDIA Tesla V100 GPUs.

General inversion stage - finetuning. After the image in-
verter is learned, we further finetune the efficient GRAM for
better image reconstruction. We only finetune the tri-plane
generator Ψ and the MLP-based decoder m, and leave the
manifold predictor M unchanged. The two networks are
learned following [22]. Specifically, we adopt the multi-
level reconstruction loss Lr in the main paper. In addition,
we leverage the locality regularization LR proposed in [22]
to ensure that images synthesized by the finetuned efficient
GRAM stay close to those of the original one at randomly

sampled locations in the latent space. Different from [22],
we finetune the efficient GRAM on the whole training set
instead of using only a single image.

During training, the Adam optimizer is also applied with
β1 = 0.9 and β2 = 0.999. The learning rate for the efficient
GRAM is 1e − 3. The balancing weights for Lr are simi-
lar to the above stage, and the weight for LR is set to 0.5.
We use a batchsize of 16 and finetune the efficient GRAM
for 100K iterations. The whole process took 1 day on 4
NVIDIA Tesla V100 GPUs.

Detail-specific reconstruction stage. Finally, we fix the
image inverter as well as the efficient GRAM learned from
the previous stages, and learn the detail manifolds recon-
structor via the losses proposed in Sec. 3.4 in the main
paper. We set the balancing weights for Lr following the
above stages. The loss weights for the novel view regular-
ization Lnv and the depth regularization Ldepth are set to 4
and 2e − 4, respectively. We use the Adam optimizer with
β1 = 0.9 and β2 = 0.999, and set the learning rate for the
detail manifolds reconstructor to 3e−4. We use a batchsize
of 8 and train the whole pipeline for 60K iterations. It took
1 day on 4 NVIDIA Tesla V100 GPUs.

I.5. Baseline Implementation Details

PIRenderer. PIRenderer [21] is a face-reenactment
method learned on video data. It leverages a 3D Morphable
Model (3DMM) [6, 20] as guidance and learns 2D warping
flow to drive a source image with target motions. It supports
intuitive control of a given image by directly modifying the
input 3DMM parameters to the network. We use the offi-
cially released code and model trained on VoxCeleb [18]
dataset1 in our experiments, and achieve pose editing of an
image by modifying the input 3D pose parameters.

Face-vid2vid. Face-vid2vid [28] is also a face-
reenactment method learned on video data. It extracts
3D keypoints of an image and derives 3D warping flows
from them to transfer the 3D features of a source image
to a target position. By using a single frame as both the
source and the target, and applying 3D rotation to the
extracted 3D keypoints of the target, it can also achieve
intuitive control over the 3D pose of a given portrait image.
Since the official code and model are unavailable, we use
a re-implementation of it trained on VoxCeleb dataset2 for
our experiments.

e4e. e4e [26] is an encoder-based StyleGAN2 [11] inver-
sion method. Its encoder adopts a feature-pyramid struc-
ture [13] and predicts StyleGAN2’s W+ space vector for a

1https://github.com/RenYurui/PIRender
2https://github.com/zhanglonghao1992/One-Shot Free-

View Neural Talking Head Synthesis

https://github.com/RenYurui/PIRender
https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis
https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis


given image. By editing the predicted latent code towards
certain direction, and sending the modified code into the
pre-trained StyleGAN2, it can achieve pose control of the
given image. We use the official released code and model
trained on FFHQ3 to carry out our experiments.

HFGI. HFGI [27] is also an encoder-based StyleGAN2
inversion method. It builds upon the e4e method and ex-
tracts extra feature maps from a given image as substitutions
to the original feature maps within StyleGAN2. Therefore,
it achieves more faithful inversion results compare to e4e.
We use its officially released code and model trained on
FFHQ4 in our experiments.

InterFaceGAN. InterFaceGAN [23] is a latent space
editing method for StyleGAN [10] and StyleGAN2. It
learns the binary classification boundaries of multiple im-
age attributes for latent vectors in StyleGAN’s W+ space.
By modifying the latent code along the direction perpen-
dicular to an interface, it can change the corresponding at-
tribute of a synthesized image. It can also be combined with
GAN inversion methods like e4e and HFGI for real image
editing. Since the officially released model only contains in-
terfaces for StyleGAN, we use the model provided by [27]
for StyleGAN2-based pose editing.

StyleHEAT. StyleHEAT [30] is also a latent space edit-
ing method for StyleGAN2 which targets at talking head
synthesis. Different from InterFaceGAN, it modifies the la-
tent feature maps within the StyleGAN2 instead of the W+
space latent vector. It learns 2D warping flows for the fea-
ture maps via the help of video data as well as the guidance
of 3DMM, similarly as done by PIRenderer. It also sup-
ports direct 3D pose editing of a given image by modifying
the 3D pose parameters for generating the warping flow. We
use the officially released code and model trained on Vox-
Celeb5 in our experiments.

pix2NeRF. pix2NeRF [2] is an encoder-based 3D-aware
GAN inversion method based on pi-GAN [4]. It simultane-
ously learns an image encoder and a 3D-aware image gen-
erator to reconstruct NeRF [16] representation from a given
image for novel view synthesis. We adopt its official re-
leased code6 in our experiments. Since the official model
is trained on CelebA [14] dataset that overlaps with our test
set, we re-train it on the FFHQ dataset for a fair comparison.

3https://github.com/omertov/encoder4editing
4https://github.com/Tengfei-Wang/HFGI
5https://github.com/FeiiYin/StyleHEAT/
6https://github.com/primecai/Pix2NeRF

Table I. Comparison with the full pipeline of IDE-3D which con-
tains an extra optimization step.

Methods PSNR ↑ LPIPS ↓ IDnv ↑ PSNRmv ↑ Time(s) ↓
IDE-3D (full) 24.43 0.092 0.507 37.10 100
Ours 21.57 0.123 0.645 39.53 0.3

Input Ours IDE-3D (full)

Figure II. Comparison with the full pipeline of IDE-3D.

IDE-3D. IDE-3D [25] is a 3D-aware GAN aiming for 3D-
consistent portrait synthesis with interactive control. Its im-
age generator is based on the tri-plane generator and the 2D
super-resolution module proposed in [3]. It also achieves
disentangled editing of real images by introducing a hybrid
GAN inversion scheme, where it first learns an image en-
coder to map a given image into the latent space of the
pre-trained generator, and then leverages instance-specific
optimization [22] to further improve the reconstruction fi-
delity. We use its official model trained on FFHQ7 in our
experiments. Moreover, in the main paper, we only use the
inversion results from its encoder instead of those from the
further optimization step for a fair comparison. A compar-
ison with its full pipeline including the optimization step is
demonstrated in Tab. I and Fig. II.

I.6. Visualization Details

Visualization results in this paper are rendered with yaw
angles ranging from −0.4 rad to 0.4 rad. The pitch angles
are identical to those of the input images, which are esti-
mated via the face reconstruction method of [6]. The roll
angles are set to zero.

I.7. Novel View Experiment Details

We describe more details about the novel view synthe-
sis comparison proposed in Sec. 4.2 in the main paper.
Specifically, we generate novel views of the first 1K test
images in the CelebA-HQ dataset using different methods
to calculate the metrics (i.e. IDnv and FIDnv in Tab. 2).
We randomly sample the yaw angle within a range of
[−0.5,−0.4]∪ [0.4, 0.5], and set the pitch and roll identical
to those of the original input. To ensure that the novel view
images have a large pose difference with the input, we mul-
tiply the sampled yaw angle by −1 if its absolute difference
with that of the input is smaller than 0.3. For all methods,
we use the same 1K sampled yaw angles to generate novel
view images for a fair comparison.

7https://github.com/MrTornado24/IDE-3D
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Figure III. Limitations of our method. It can produce layered ar-
tifacts under large viewing angles. We also observe a ghosting
artifact for certain subjects where the background contains the ap-
pearance of ears. In addition, it cannot well handle occlusions and
out-of-distribution data.

Input w/o BG   with BG Input w/o BG   with BG

Figure IV. More comparisons between rendering with or without
the background plane. Best viewed with zoom-in.

II. More Results
II.1. Novel View Synthesis Results

Figure VI, VII and VIII shows more novel view synthesis
results by our method on CelebA-HQ test data. Figure IX
further shows novel view synthesis results on in-the-wild
images. Our method can generate realistic novel views with
high fidelity and strong 3D consistency for diverse subjects.
Please see the project page for animations.

II.2. Comparisons with the Prior Art

Figure X and XI show more comparisons between our
method and the previous methods. Our method can well
preserve fine details in the original images and produces
their novel views with more strict 3D consistency compared
to the others. Please see the project page for animations.

We further compare with the full inversion pipeline of
IDE-3D, which adopts the EG3D structure and leverages
optimization-based inversion (i.e. encoder-based initializa-
tion + pivot tuning). The results and a visual example are
shown in Tab. I and Fig. II. The PSNR, LPIPS, and IDnv

are calculated on the first 100 instances in the CelebA-HQ,
and the PSNRmv on 50 instances. Our method performs
slightly worse than the state-of-the-art optimization-based
method on image reconstruction quality, but shows better
novel view results and 3D consistency, and has dramatically

faster inference speed.

II.3. More Applications

Dolly zoom effect. Since our method is based on
GRAM [5] that leverages the radiance manifolds represen-
tation, we can explicitly move the camera towards or away
from a subject, and adjust the camera fov accordingly to en-
sure that the size of a portrait in the synthesized image stays
a constant. In this way, we can generate a sequence of im-
ages under different levels of camera distortions, which is
known as the dolly zoom effect8. It can hardly be achieved
by 2D-GAN based face editing methods without explicit
camera modeling. Examples of this effect generated by our
method are shown in Fig. XII. Animations can be found
in the project page.

3D-consistent editing. Our method can also be applied to
3D-consistent interactive portrait editing thanks to its ability
to preserve fine image details. Specifically, given a real por-
trait image, we can draw some arbitrary patterns on it and
send the edited result to our GRAMinverter for reconstruc-
tion and novel view synthesis. As shown in Fig. XIII, our
method can well preserve the drawn patterns on the input
images and generate their 3D-consistent novel views bear-
ing these patterns. Corresponding animations are in the
project page.

III. Limitations and Future Works
We thoroughly discuss the limitations of our method and

possible future solutions to improve it.
Our method adopts the radiance manifolds representa-

tion. Although it helps us to synthesize novel views with
strong 3D consistency, it can produce layered artifacts at
large viewing angles as shown in Fig. III. This artifact could
be alleviated to some extent by using more profile images
as training data. In addition, it could also be reduced by
leveraging alternative 3D representations, such as some re-
cently proposed efficient NeRF representations [8, 17, 24].
However, it is still unclear how to effectively incorporate
these representations for high-quality and efficient novel
view synthesis of monocular portraits.

We also observed ghosting artifacts in some cases where
the background contains the appearance of ears. The major
cause is that the background plane and the foreground sub-
ject share the same tri-plane generator so they might have
similar appearance patterns in some regions. Some floating
points can also be observed around the silhouette, which are
mainly due to the wrong parallax provided by inaccurate
coarse depth (geometry) estimated from the general inver-
sion stage. These problems can be alleviated by only ren-
dering the foreground subject as shown in Fig. III, or using

8https://en.wikipedia.org/wiki/Dolly zoom

https://en.wikipedia.org/wiki/Dolly_zoom


an extra image generator to synthesize the background. We
show more comparisons with or without the background in
Fig. IV. Clearly, removing the background largely reduces
the layered artifacts and the floating points.

Besides, our method cannot well handle occlusions and
tends to interpret them as textures clinging to the face as
shown in Fig. III. One possible solution is to leverage an
extra face segmentation network to mask out the occluded
regions and let the model only focus on reconstructing the
portrait region. Our method can also produce inferior re-
sults for out-of-distribution input with large poses and ab-
normal lighting. The synthesized images may also have a
global color shift compared to the input in certain cases.
We believe these problems can be mitigated by training on
larger-scale datasets with carefully tuned loss weights. In
addition, our method cannot well handle complex lighting
effect when varying the camera pose, such as specular re-
flectance. More dedicated 3D representations [7] are re-
quired to tackle this problem.

Finally, our method does not support editing of attributes
like expression, due to the learned details being aligned
with the original input image. This problem can be tack-
led by introducing a distortion-aware detail reconstructor
similarly as done by some recent 2D GAN inversion meth-
ods [27], or leveraging a 3D representation that handles dy-
namic changes [19, 29]. We leave these explorations as fu-
ture works.

IV. Ethics Consideration
The goal of this paper is efficient large-scale virtual

avatar creation. It does not intend to create misleading or
deceptive content. However, it could still be potentially
misused for impersonating humans. In particular, the 3D-
consistent synthesized portraits might be used to fool the
3D face recognition system that relies on multiview consis-
tency. We condemn any behavior to create such harmful
content. Currently, the synthesized portraits by our method
contain certain visual artifacts that can be identified by hu-
mans and some deepfake detection methods. We encourage
to apply this method for learning more advanced forgery
detection approaches to avoid potential misusage.
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Figure V. Network structure of the detail manifolds reconstructor. It consists of a detail encoder Edetail and a super-resolution module U .



Novel viewsInput

Figure VI. More novel view synthesis results on CelebA-HQ by our method. Best viewed with zoom-in.
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Figure VII. More novel view synthesis results on CelebA-HQ by our method. Best viewed with zoom-in.



Novel viewsInput

Figure VIII. More novel view synthesis results on CelebA-HQ by our method. Best viewed with zoom-in.
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Figure IX. More novel view synthesis results on in-the-wild images. Best viewed with zoom-in.
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Figure X. More pose editing comparisons. Best viewed with zoom-in and see the project page for animations.



InputOursIDE-3D (encoder)pix2NeRFStyleHEAT

InputHFGI+InterFaceGANe4e+InterFaceGANFace-vid2vidPIRenderer

Figure XI. More pose editing comparisons. Best viewed with zoom-in and see the project page for animations.



Moving closeInput Moving away Recon.

Figure XII. Dolly zoom effect of the given portraits produced by our method. See the project page for animations.
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Figure XIII. 3D-consistent portrait editing results by our method. See the project page for animations.
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