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Figure 1. Images generated by [5] with ‘a pumpkin’.

1. Additional Results
1.1. Images in the Wild

Figure 2 shows our additional results and comparisons
for images in the wild. The results are presented in 4 groups,
each group containing 3 objects from similar classes but
with different content details and appearances. We use this
to test the capability of each method in capturing the overall
semantics and visual feature variations from input images.
Comparison to DietNeRF [2]. For a fair comparison,
DietNeRF is also optimized with the estimated depth at the
input view. While DietNeRF is able to maintain appearance
consistency between different views, it fails to capture the
overall geometry of the objects, especially when the object
has complex geometric structures (such as the chairs in the
1st group, and the baskets in the 3rd group). In the 4th group
(the skirts), our generated textures for the unseen back re-
gions are also closer to the input image than DietNeRF.

Our method also addresses the naturally existing ambi-
guity in novel-view inference, especially for the occluded
regions in the input view. For example, in the 3rd group in
Figure 2, the unseen spaces of the baskets are filled with dif-
ferent fruits/flowers/vegetables, instead of duplicating the
input views as DietNeRF [2]. As a feature or as an induc-
tive bias, such synthesis results are also affected by the 2D
distribution from the image diffusion model. For example,
Figure 1 shows the image generation results by [5] with text
prompt ‘a pumpkin’. Half of them are Jack-o’-lanterns.
This makes our synthesized pumpkin also having the Jack-
o’-lantern face at its back (the 3rd row of the 2nd group).
Comparison to SS3D [6]. As a geometry-based method,
SS3D captures better global geometries than DietNeRF

even without the depth regularization, especially on the ob-
ject classes covered by ShapeNet [1] where it is trained on
(the chairs in the 1st group) or objects with symmetries (the
2nd group). But it fails to capture any fine-grained geomet-
ric detail.

1.2. DTU MVS Dataset [3]
Figure 3 shows our additional DTU results.

1.3. Geometric Outputs
Figure 4, 5, and 6 show the depth outputs of our method.

2. Implementation Details
Table 1 shows the setups and parameters for both DTU

and in-the-wild-image experiments. At the input view, we
render RGB images and depth maps at the same size of the
input image and compute pixel-aligned losses as defined in
the main paper. For the novel views, we always render im-
ages at the size 128× 128 and resize it to 512× 512 before
feeding it into the latent diffusion model of [5].

For the NeRF scene construction, we use the multi-
resolution grid sampler from [4]. The color densities are
bounded in a ball of radius bound centered at the origin.
The grid resolution of the sampler is then 2048 × bound.
For images in the wild, we randomly sample novel-view
camera poses within a radius range of radius range
and a FOV within the fov range. The camera pose and
FOV for the input view is fixed. For the DTU experiments,
camera extrinsics and intrinsics are adopted directly from
the dataset with a Guassian noise added to the camera pa-
rameters to avoid directly learning on the test views. We op-
timize for the NeRF parameters with a total of num iters
steps. Here the num iters = 4900 = 49× 100 for DTU
is because each DTU scene has 49 sampled camera views.
For the neural rendering, each ray is sampled by 32 steps
followed by 32 upsample steps.

For the DTU MVS dataset, the image captions used by
our method for the 15 test scenes are listed in Figure 7.
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Figure 2. Additional results for images in the wild.



Figure 3. Additional results on the DTU MVS dataset.



(a) Depth results for the DTU test scenes (Figure 5 in the main paper).

(b) Depth results for the Google Scanned Objects (Figure 6 in the main paper).

(c) Depth results for images in the wild (Figure 7 in the main paper).
Figure 4. Depth results for the main paper experiments.



Figure 5. Additional depth results for images in the wild (Figure 2 in the supplementary material).



Figure 6. Additional depth results on the DTU MVS dataset (Figure 3 in the supplementary material).



Figure 7. Text prompt for each scene in the DTU test set.

Table 1. Setups and Parameters for DTU and In-the-Wild Image Experiments

Experiments DTU In-the-wild

Data

Input image size 400× 300 128× 128
Novel-view render size 128× 128 128× 128

Scene

bound 3.0 0.5
grid resolution 2048× bound 2048× bound

Camera

z range [0.1, 5.0] [radius − 0.5, radius + 0.5]
radius range - [1.0, 1.5]
fov range - [40◦, 70◦]
Input view radius - 1.5
Input view fov - 35◦

Training

num iters 4900 10000
learning rate 1e-3 1e-3
num ray samples 32 32
num ray upsamples 32 32



References
[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. Shapenet: An information-
rich 3d model repository. arXiv preprint arXiv:1512.03012,
2015. 1

[2] Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf
on a diet: Semantically consistent few-shot view synthesis.
In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5885–5894, 2021. 1

[3] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engin Tola,
and Henrik Aanæs. Large scale multi-view stereopsis eval-
uation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 406–413, 2014. 1

[4] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multireso-
lution hash encoding. arXiv preprint arXiv:2201.05989, 2022.
1

[5] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, June 2022. 1

[6] Kalyan Alwala Vasudev, Abhinav Gupta, and Shubham Tul-
siani. Pre-train, self-train, distill: A simple recipe for supersiz-
ing 3d reconstruction. In Computer Vision and Pattern Recog-
nition (CVPR), 2022. 1


	. Additional Results
	. Images in the Wild
	. DTU MVS Dataset jensen2014large
	. Geometric Outputs

	. Implementation Details

