
PointVector: A Vector Representation In Point Cloud Analysis

Xin Deng** WenYu Zhang* Qing Ding†† XinMing Zhang†

University of Science and Technology of China
{xin deng,wenyuz}@mail.ustc.edu.cn, {dingqing,xinming}@ustc.edu.cn

A. Preliminary
A.1. Problem of WaveMLP.

WaveMLP [11] views the patch of each picture as a wave
representation, and considers that the feature of that patch
should have two attributes, phase and amplitude, with am-
plitude representing the actual property of the feature and
phase modulating the amplitude that this wave exhibits at a
moment. It thus considers that the feature extraction of the
patches can be viewed as a superposition of waves. How-
ever, there is an important problem, WaveMLP gets an ab-
solute representation of a patch, i.e. the patch is the same
when participating in aggregation in any local region. The
representation of a patch should be different in different lo-
cal regions, so we focus on modulating the feature aggrega-
tion in local regions. That is, we use a vector representation
to better express the relative relationship between neighbor
points and centroids in the local region.

In addition, WaveMLP use GroupConv [3] to implement
the aggregation and projection process with kernel sizes of
1× 7 and 7× 1. In this paper we take the form of a combi-
nation of the reduction function and GroupConv for aggre-
gation. We give an example of why the original GroupConv
is not suitable for this representation of vectors. We take
two-dimensional vectors (x1, y1) and (x2, y2) as an exam-
ple. The vectors are represented in coordinate form, and
then the original vector aggregation method can be formu-
lated as:

f12 = (w1(x1, y1) + w2(x2, y2)) · (w3, w4)
T

= w3w1x1 + w3w2x2 + w4w1y1 + w4w2y2

= a1x1 + a2x2 + a3y1 + a4y2,

(1)

where f12 denotes the result of aggregating two vectors,
w1 and w2 are the weights of two vectors in summation,
{w3, w4} is the projection matrix, and ai is the weight of
each component. We can obtain the equation that should
be satisfied between the coefficients of each component:
a1 ∗ a4 = a2 ∗ a3. That is, the final trained weights need

*Co-first authors with equal contribution to refining the theory and ex-
perimental design

†Corresponding authors

to satisfy this equation for the weighted summation formula
of the vectors to hold. However, the network does not im-
pose this restriction on these parameters. So the original
groupconv does not preserve the totality of the vector.

A.2. Methodology Review.

The point-based approach was first introduced by Point-
Net [7]. We denote f l+1

i as the extracted feature of point i
after stage l+1, Ni as the neighbors of point i and n is the
number of incoming points. The simplest point-set operator
can be expressed as follows:

f l+1
i = R{H{[f l

j , pj − pi]}|j ∈ Ni}, (2)

where R is the reduction function that aggregates features
for point i from its neighbors Ni and H means the shared
MLPs.

The subsequent dynamic convolution-based network
[12] [17] can be similarly represented as PointNet-like point
set operators:

f l+1
i = Sum{ϕ{f l

j , pj − pi} · f l
j |j ∈ Ni}, (3)

where ϕ() means the dynamic weight generation function
that generates dynamic weights for each point based on the
input feature and location information. Eq.3 shows that the
reduction function of dynamic convolution chooses sum and
uses dynamic weights to generate a new fj .

Similarly, the attention network [19] can be expressed
as a similar point set operator. The core operation can be
formulated as follows:

f l+1
i = Sum{att{f l

j , f
l
i , pos} · σ{f l

j , pos}|j ∈ Ni}, (4)

where att() means the attention function that generates at-
tention weights for each point, pos denotes the position
information, and σ() means the linear transform function
without anisotropy. Eq.4 shows that it uses the attention
mechanism to update the features of each point j and then
uses sum as the reduction function.

Furthermore, template-based methods such as 3D-GCN
make use of kernels with relative displacement vectors and

1

weights. These weights are influenced by the cosine simi-
larity between the relative displacement vector of the input
features and the relative displacement vector of the kernel.
The core operation can be formulated as follows:

f l+1
i = fi · kernelc +

k∑
m=1

max{sim{kernelm, fj}|j ∈ Ni},

sim{kernerlm, fj} = cos{dkm, dpj} · kernerlm · fj ,
(5)

where k means the kernel size, Ni means the neighbors
of point i, kernelc means the center element of kernel,
cos{dkm, dpj} means Cosine similarity of m-th kernerl el-
ement and j-th point feature, kernelm means m-th kernel
element, dkm, dpj means displacement vector of m-th ker-
nel element and j-th point feature respectively.

We propose a unique method for generating new features
fj by introducing a vector representation, where the direc-
tion of the vector guides the aggregation method.

B. Architecture
B.1. Vector encoder

Figure 1. The Vector encoder module. Two angles are predicted
by MLP and zx is transformed by linear.

We provide detailed definitions in the manuscript, and
we provide illustrations to illustrate the exact process. As
shown in Fig.1, the local information is obtained by a com-
bination of relative features and relative positions. Note that
the sum symbol in the figure means sum and ReLU oper-
ations. We use the simplest method to predict the angles
using MLP, and by default the two angles are independent
of each other. For zx, a simple transformation is performed
with linear, and then a vector representation is obtained by
rotation. The vector representation v ∈ RB,C×3,N , where
B is the batch size, C is the channel of module and N is the
spatial size of the input feature of the module.

B.2. Classification architecture.

As shown in Fig.2, we use the LocalVector module to
replace the 4 SetAbstract modules and keep the downsam-
pling parameters unchanged. The last SetAbstract was orig-
inally used to aggregate all the remaining points, so we
leave it as it is. In the classification task, the max reduc-
tion fuction has a greater advantage by retaining the most
intense part of the variation.

Figure 2. The Classification architecture PointVector-S. For
comparison with PointNext [9], we replaced the SetAbstract mod-
ule with the LocalVector module, keeping the other parameters the
same.

C. Experiments

C.1. Classification on ModelNet40

Method mAcc OA
% %

PointNet [7] 86.2 89.2
PointCNN [5] 88.1 92.2
PointConv [14] – 92.5
KPConv [12] - 92.9
DGCNN [13] 90.2 92.9
DeepGCN [4] 90.9 93.6
ASSANet-L [8] - 92.9
Point Cloud Transformer [1] - 93.2
Point Transformer [19] 90.6 93.7
CurveNet [16] - 93.8
PointMLP [6] 90.9±0.4 93.7±0.2
PointNet++ - 91.9
PointNet++(PointNext) 89.9± 0.8 92.8± 0.1
PointNext(C=32) 90.8± 0.2 93.2± 0.1
PointNext(C=64) 90.9± 0.5 93.7± 0.3
PointVector-S(C=32) 90.3± 0.2 93.2± 0.2
PointVector-S(C=64) 91.0± 0.5 93.5± 0.2

Table 1. Object Classification on ModelNet40.

ModelNet40 [15] is a commonly used dataset for object
classification, which is generated by 3D graphic CAD mod-
els. It has 40 object categories, each of which contains 100
unique CAD models. Recent works [6] [10] [2] show an in-
creasing interest in the real-world scanned dataset ScanObe-
jectNN [18] than this synthesized 3D dataset ModelNet40.
Therefore, we choose to report the results on ScanOb-
jectNN in the manuscript. Furthermore, we report the re-
sults of our PointVector-S model on ModelNet40. We use
the same parameters as PointNext: CrossEntropy loss with
label smoothing, AdamW optimizer, a learning rate of 1e-
3, a weight decay of 0.05, cosine learning rate decay, and a
batch size of 32 for 600 epochs, while using random scaling
and translation as data augmentations. As shown in table 1,

the relatively poor performance of our model on the Mod-
elNet40 dataset indicates the limitation of the proposed lo-
cal vector representation in aggregating global information.
We used hyperparameters consistent with PointNext and a
training strategy that may not be suitable for our model,
which may also account for the relatively poor performance.
Note that our network structure on the classification task di-
rectly takes vector feature aggregation for downsampling,
but max-pooling is probably the simplest and most effec-
tive method for downsampling.

C.2. Ablation study

There is a slight problem with the experimental setup
in the manuscript, in the 6-fold cross-validation experiment
we report the PointVector-L as the standard setup men-
tioned in the manuscript, but in the S3DIS Area5 and ab-
lation experiments we report the setup of PointVector-L as
V=[2, 2, 4, 2]. But, the max+groupconv in the manuscript
is reported as V=[2,4,2,2].

Method size OA mAcc mIOU
% % %

PointVector-L
(max+groupconv)

V=[2,4,2,2] 90.6 76.2 70.6
V=[2,2,4,2] 90.6 77.1 71.1

PointVector-L
(sum+groupconv)

V=[2,4,2,2] 90.3 77.21 70.8
V=[2,2,4,2] 90.8 77.3 71.2

PointVector-XL
V=[3,5,3,3] 90.8 78.3 72.3
V=[3,3,5,3] 91.0 76.7 71.1

Table 2. Results for models with different number of stagess on
S3DIS Area5.

Number of stages. Since the PointVector-L with
max+groupconv is reported by another configuration in the
manuscript, we compare the two configurations here. As
the tab.2 shows, the two reduction functions, max and sum,
obtain very similar results, but sum has a higher mAcc and
OA. This is consistent with our assumption that better re-
sults can be obtained by simply using groupconv to pro-
cess vectors of each channel independently. Small and large
models do not behave consistently in terms of the number
of stages. This is an interesting phenomenon, but not the
main point of our statement, so it will not be discussed for
now.

The following experiments are reported by default as
PointVector-XL [3,5,3,3], PointVector-L [2,2,4,2] if no spe-
cial instructions are given.

Baseline. Our model has some gaps in channel variations
and inputs with PointNeXt. To really evaluate whether our
model has a greater advantage, we reset a baseline. We
take our core operations i.e. Vector encoder and reduc-
tion+groupconv+channel mixing Linear was removed and

Method OA mAcc mIOU Params
% % % M

PointNeXt-XL 90.7 77.5 70.8 41.6
PointVector-base 90.9 77.0 71.4 37.2
PointVector-XL 90.8 78.3 72.3 24.1

Table 3. Baseline. The same experimental configuration was used
for all three models.

replaced with PointNeXt’s MLP+max+MLPs, where the
channel of first MLP was transformed from c to 3c. The new
model is named PointVector-base. The tab.3 shows that our
model has a large improvement in each metric compared to
baseline. Also this shows that the other parts of our model
are superior compared to the original PointNeXt.

type Method OA mAcc mIOU
% % %

feature
fj − fi+pos 90.8 77.3 71.2
[fj − fi,pos] 88.8 70.5 64.9
fj+pos 90.9 76.6 70.5

residual
linear 90.8 77.3 71.2
identity 90.3 75.8 69.3

Table 4. Other Components. + means that the two are added to-
gether and then passed through the relu layer. [,] means to directly
concatenate two elements.

Other Components. The manuscript mentions that other
operations of our model have a larger role, so we conducted
ablation experiments on PointVector-L to explore the effect
of both input features and residuals on the S3DIS segmen-
tation task. Tab.4 shows that the two parts of the features
are added together and then relu can better fuse their infor-
mation. In addition relative features are more robust than
absolute features. The key is that residual uses linear com-
pared to identity, which is a huge improvement.

D. Visualization
As shown in the Fig.3, it can be found that our model

performs a little better in complex areas. This shows that
we are able to extract more detail in such intensely varied
areas than the max-pooling operation of PointNeXt. But we
are also prone to miscalculation in flat areas, which is our
disadvantage.

E. Code release
Since our model is based on PointNext, we used their

code and added a PointVector model. Since our classifica-
tion and part segmentation and semantic segmentation tasks
use different model compositions, the model code is also
different, and the corresponding PointVector.py needs to be

Figure 3. Qualitative comparisons of PointNext (2nd column),
PointVector++ (3rd column), and Ground Truth (4th column)
on S3DIS semantic segmentation. The input point cloud is visu-
alized with original colors in the 1st column. We have circled the
different places with a paintbrush.

replaced at runtime. We have not organized the code yet,
where PATM represents the core part of our LocalVector
module. In the classification and part segmentation tasks,
it replaces the convs+max pooling operation in SetAbstrac-
tion. See the official instructions for PointNext for related
running instructions. And on s3dis our gravity dim is set to
1. The code of each task is a little different, on ScanOb-
jectNN classification task we insert leakyrelu in the two
linear after the reduction function, and the relative features
of the input after BN, encoder’s activation function all use
leakyrelu can reach 88.4% OA, but this is not the main point
of our statement, so we do not discuss it for now. The code
takes time to organize and we will make it public later.

References
[1] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang

Mu, Ralph R. Martin, and Shi-Min Hu. Pct: Point cloud
transformer. Computational Visual Media, 7(2):187 – 199,
2021. 2

[2] Abdullah Hamdi, Silvio Giancola, and Bernard Ghanem.
Mvtn: Multi-view transformation network for 3d shape
recognition. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1 – 11, Virtual, Online,
Canada, 2021. 2

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger, editors, Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012. 1

[4] Guohao Li, Matthias Mueller, Guocheng Qian, Itzel Carolina
Delgadillo Perez, Abdulellah Abualshour, Ali Kassem Tha-

bet, and Bernard Ghanem. Deepgcns: Making gcns go as
deep as cnns. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021. 2

[5] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. In Advances in Neural Information Processing Sys-
tems, volume 2018-December, pages 820 – 830, Montreal,
QC, Canada, 2018. 2

[6] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Re-
thinking network design and local geometry in point cloud:
A simple residual mlp framework, 2022. 2

[7] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017,
volume 2017-January, pages 77 – 85, Honolulu, HI, United
states, 2017. 1, 2

[8] Guocheng Qian, Hasan Hammoud, Guohao Li, Ali Thabet,
and Bernard Ghanem. Assanet: An anisotropic separable
set abstraction for efficient point cloud representation learn-
ing. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems, volume 34, pages 28119–28130.
Curran Associates, Inc., 2021. 2

[9] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai,
Hasan Hammoud, Mohamed Elhoseiny, and Bernard
Ghanem. Pointnext: Revisiting pointnet++ with improved
training and scaling strategies. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2022. 2

[10] Haoxi Ran, Jun Liu, and Chengjie Wang. Surface represen-
tation for point clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 18942–18952, June 2022. 2

[11] Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Yanxi Li,
Chao Xu, and Yunhe Wang. An image patch is a wave:
Phase-aware vision mlp. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10935–10944, June 2022. 1

[12] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, Francois Goulette, and Leonidas
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE International Con-
ference on Computer Vision, volume 2019-October, pages
6410 – 6419, Seoul, Korea, Republic of, 2019. 1, 2

[13] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics, 38(5), 2019. 2

[14] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In Proceed-
ings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 2019-June, pages
9613 – 9622, Long Beach, CA, United states, 2019. 2

[15] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, volume 07-12-
June-2015, pages 1912 – 1920, Boston, MA, United states,
2015. 2

[16] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and
Weidong Cai. Walk in the cloud: Learning curves for point
clouds shape analysis. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 895 – 904,
Virtual, Online, Canada, 2021. 2

[17] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan
Qi. Paconv: Position adaptive convolution with dynamic ker-
nel assembling on point clouds. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 3172 – 3181, Virtual, Online, United
states, 2021. 1

[18] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A scalable active framework for
region annotation in 3d shape collections. ACM Transactions
on Graphics, 35(6), 2016. 2

[19] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H.S. Torr,
and Vladlen Koltun. Point transformer. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 16259–16268, October 2021. 1, 2

	. Preliminary
	. Problem of WaveMLP.
	. Methodology Review.

	. Architecture
	. Vector encoder
	. Classification architecture.

	. Experiments
	. Classification on ModelNet40
	. Ablation study

	. Visualization
	. Code release

