Supplementary Material for Learning a Depth Covariance Function

Eric Dexheimer and Andrew J. Davison
Dyson Robotics Lab, Imperial College London

{e.dexheimer2l, a.davison}@imperial.ac.uk

1. Network Architecture and Training Details

For the convolutional neural network (CNN) component
of our system, we use a UNet [5]. The 256 x 192 RGB
input is first converted into a 16-dimensional feature space,
which is the input to the UNet. We use 5 downsampling and
upsampling layers. Each downsampling layer consists of
max pooling and two residual convolution layers [2]. Each
upsampling layer bilinearly interpolates the feature map to a
higher resolution, performs a convolution, and then the two
residual convolutions. We use LeakyReL.U as the activation
function for all convolutions, and we also use GroupNorm
[6] with 16 groups.

The final four upsampling layers give outputs of the co-
variance parameters at different resolutions. When training,
we compute the mean loss with respect to a resized depth
image for each of these levels, and then scale the loss so
that higher resolutions are given higher weight according to
the number of pixels. For example, the highest resolution
will have four times more weight than the second highest.

For the Nystrom approximation during training, we fix
the rank to be 128. The 128 inducing locations are sampled
randomly since this is relatively efficient and was found to
be more stable than active sampling. Exploring the rank pa-
rameter and how it may trade-off expressiveness and com-
pactness is an interesting avenue for future work.

As mentioned previously, to handle scale, we solve for
the optimal mean log-depth that minimizes the data term of
the negative log marginal likelihood. To minimize the vari-
ational free energy, we use the Adam [3] optimizer with an
initial learning rate of 3e—4. During training, we used a
batch size of 4 and performed data augmentation with ran-
dom rotations, resized crops, flips, and color jitter.

2. Active Sampling Implementation

For active sampling of pixel locations to condition on or
select as inducing points, we use the greedy variance selec-
tion described in [1]. We calculate the conditional variance
for all pixel locations with respect to the current samples,
and select the location with the highest variance. The condi-
tional variance is the diagonal of the conditional covariance

matrix described previously:
Y= Kff_Kfn(Knn"_o—?ZI)_lKnﬂ (D

Since this form requires maintaining the inverse (K, +
o21)~! which is dynamically changing, we perform O(n)
updates to the Cholesky factorization as in [4]. The decom-
position is written as

(Kon +020) ' = (L") =777})

Furthermore, we may also avoid recomputing the entire
variance diag[X.,] from scratch for each newly added point.
We may write the conditional covariance as

Yo = K — (L7 Kop) T (L7 Koyp). 3)

Since we only require diag[X.], we only need to add the
new row of L~! K for each new input point, and take the
squared norm of each column when computing the variance.
We do not actually invert L, but instead use efficient trian-
gular solves via forward substitution. Thus, we only need
to update L and L1 K, each with a new row. This avoids
O(n?) inversions and O(n?) triangular solves for each step
of the greedy selection.

3. Visual Odometry Photometric Factor

As mentioned previously, given log-depths reference
frame i, we form the photometric constraint with respect
to frame j:

E= "> Ii(xn) = Li(w(xn, Ti, Ty, yi, mi)| |22
,JEE n
4)

where [is the image intensity, x are pixel coordinates, w is
the warping function that queries a depth map and projects
the corresponding point into the neighboring image, T are
camera poses, y are the latent log-depth observations, and
m is the mean log depth for a given frame.

First, the dense log-depth map is formed via the GP con-
ditional mean:

£ =m; + Kiy(Kon + 021) "y — my). Q)

The 3D points P; in the reference frame can be calculated
via backprojection of the vectorized pixel coordinates x; via
the known camera intrinsics:

P; =7 !(x;,e™). (6)

The points may then be transformed into frame j and pro-
jected into the image to yield the correspondence

x; = 7(T; ' T;P;). (7)

These steps describe the warping function w that is used to
achieve correspondence.

When the exposure times may vary, we also include
affine brightness parameters (a, b) for the photometric fac-
tor. For brevity, we write the correspondences from w as
X;, so that the unwhitened residual becomes

—a;

ri;=1I(x;)+b; — (Zaj[j(xj) + bj>) (8)

The affine brightness terms are jointly optimized with the
other unknowns. To further robustify the cost against oc-
clusion and specular surfaces, we use the Huber robust cost
function instead of the non-robust least-squares cost.

References

[1] Carlos Guestrin, Andreas Krause, and Ajit Paul Singh. Near-
optimal sensor placements in Gaussian processes. In Proceed-
ings of the International Conference on Machine Learning
(ICML), 2005. 1

[2] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016.
1

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proceedings of the International
Conference on Learning Representations (ICLR), 2015. 1

[4] Ananth Ranganathan, Ming-Hsuan Yang, and Jeffrey Ho. On-
line sparse Gaussian process regression and its applications.
IEEE Transactions on Image Processing, 2011. 1

[5] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolu-
tional networks for biomedical image segmentation. In Pro-
ceedings of the International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI),
2015. 1

[6] Yuxin Wu and Kaiming He. Group normalization. In Proceed-
ings of the European Conference on Computer Vision (ECCV),
September 2018. 1

	. Network Architecture and Training Details
	. Active Sampling Implementation
	. Visual Odometry Photometric Factor

