
Hidden Gems: 4D Radar Scene Flow Learning Using
Cross-Modal Supervision - Supplementary Material

Fangqiang Ding1 Andras Palffy2 Dariu M. Gavrila2 Chris Xiaoxuan Lu1,*

1University of Edinburgh
{fding, xiaoxuan.lu}@ed.ac.uk

2Delft University of Technology
{a.palffy, d.m.gavrila}@tudelft.nl

This supplementary document is organized as follows:

• Sec. A illustrates more details about the dataset and the
splits we used in our experiments.

• Sec. B lists all symbols used in our approach together
with their meanings and dimensions.

• Sec. C introduces more details about our multi-task
model architecture.

• Sec. D presents more implementation details on re-
trieving cross-modal supervision and losses.

• Sec. E provides more detailed experimental results and
analysis of our approach.

• Sec. F shows more qualitative scene flow, motion seg-
mentation and ego-motion estimation results.

Besides, we also provide supplementary demo videos at
https://youtu.be/PjKgznDizhI.

A. Dataset Details
Dataset separation. As discussed in the main text, the
test set annotations of the official View-of-Delft (VoD)
dataset [14] are withheld for benchmarking. Our task, how-
ever, needs to compute custom scene flow metrics with
ground truth labels, which demands manually annotated 3D
bounding boxes. Thus, for our experiments, we split the
VoD dataset [14] ourselves. In these new splits, we kept the
original Val set unchanged and divided a part of the origi-
nal training set into a new Test set so that we can generate
ground truth scene flow using object annotations for evalu-
ation. The remaining sequences from the original training
set are used for our training. To avoid wasting the data from
the original testing set, we add its frames to our training
data and form a new Train set. Note that we remove all an-
notations from the frames in this Train set and use it for
self-supervised or cross-modal supervised learning meth-
ods. Concrete details of our splits can be found in Tab. A.
Data preprocessing. Given sequences of radar point
clouds, we first filter out the radar points outside the Field-
of-View (FoV) of the camera as only objects partially or

*Corresponding author: Chris Xiaoxuan Lu (xiaoxuan.lu@ed.ac.uk)

Val Test Train

Number of frames 1,296 2,724 4,662
Number of sequences 4 7 13
Is it annotated? True True False

Table A. Details of our new splits for the VoD dataset [14].

fully within the camera FoV were annotated in the dataset
originally. Then, we set a z-axis (up-down direction) range
[-3m, 3m] and filter points outside of this range as these
very low or high points are often ghost targets. During train-
ing, we randomly sample 256 radar points for each point
cloud to facilitate fast mini-batch learning. During infer-
ence, however, we keep the original number of points be-
cause our task is to estimate the flow vector of every radar
point in the source frame. Finally, for each sequence, we
form Lseq −1 scene flow input samples by combining pairs
of consecutive radar point clouds, where Lseq is the length
(i.e. number of frames) of the sequence.
Ground truth labelling. As mentioned in the main text,
we only annotate ground truth scene flow and motion seg-
mentation labels for the samples from Val and Test sets.
Following [1, 6], we annotate ground truth scene flow by
using object annotations (i.e., bounding boxes and track
IDs) and ground truth radar ego-motion (calculated from
the RTK-GPS/IMU based odometer). For points belonging
to the static background, we label their flow vectors with the
ground truth radar ego-motion. For foreground objects, we
track the ID of each annotated bounding box across consec-
utive point clouds and compute their rigid transformation
w.r.t the radar coordinate frame. Each foreground point is
assigned a ground truth flow vector, which is summarized
by this corresponding rigid transformation. Then, for each
foreground point belonging to an object, we assign a ground
truth flow vector derived from the rigid transformation of
the object. To obtain the ground truth motion segmenta-
tion, we first compute the non-rigid flow vector fnri for each
point by compensating the ground truth rigid ego-motion as
[fnri 1]⊤ = [fgti 1]⊤ − (T − I4)[ci 1]

⊤. Then, points with
|fnri | > ζmov = 5cm are labelled as moving, while the rest

1

are labelled as static.

B. Notation
For the convenience of reference, we summarize all sym-

bols used in our approach together with their meanings and
dimensions in Tab. B.

C. Model Architecture Details
Here, we introduce more details about our module design

and layer hyperparameters of our model architecture.
Backbone. The input to our backbone is two consecu-
tive 4D radar point clouds, Ps ∈ RN×(3+C) and Pt ∈
RM×(3+C). As the foremost step, we use the set conv
layer [12] to extract local features at different scales. De-
tailed layer parameters of this multi-scale set conv layer are
as follows:

syntax: SC([radii], [nsamples], [dimension])

where [radii] denotes the grouping radii for multiple scales,
[nsamples] denotes the number of local sampled points,
and [dimension] are the latent feature sizes.

SC([2.0, 4.0, 8.0, 16.0], [4, 8, 16, 32], [[32, 32, 64], [32, 32,

64], [32, 32, 64], [32, 32, 64]]) → MLP (256 → 256 →
256 → 256)

Note that we do not downsample our radar point clouds be-
cause they are already very sparse. After concatenating the
global feature vector to point-wise features, we obtain the
local-global features for each individual input point cloud:
gθ(P

s) ∈ RN×512 and gθ(P
t) ∈ RM×512.

To propagate the features from the target point cloud to
the source, we adopt the cost volume layer in [22] for feature
correlation. The costs are aggregated in a robust patch-to-
patch manner and a MLP was used to learn point-to-point
cost dynamically:

MLP (512× 2 + 3 → 512 → 512 → 512)

In patch-to-patch cost aggregation, the number of neighbour
points is set to 8. As a results, we can obtain the correlated
features hθ(gθ(P

s), gθ(P
t)) ∈ RN×512.

The flow embedding FE ∈ RN×(512+512+C) can be
generated by concatenating the correlated features, the
local-global features and the raw input features of Ps. We
further feed this flow embedding into another multi-scale
set conv layer to get L ∈ RN×256:

SC([2.0, 4.0, 8.0, 16.0], [4, 8, 16, 32], [[512, 256, 64],

[512, 256, 64], [512, 256, 64], [512, 256, 64]])

→ MLP (256 → 256 → 256 → 256)

Another max-pooling operation follows to restore the global
feature vector and concatenates it to each point. Finally, we
obtain our base backbone features E ∈ RN×512.

Initial flow and motion segmentation head. As the base
backbone feature E includes complementary features ex-
tracted from two input point clouds, we simply use the
MLP to implement our initial flow and motion segmenta-
tion heads for decoding. The output of the initial flow are
3D flow vectors F̂init ∈ RN×3:

MLP (512 → 256 → 128 → 64 → 3)

The motion segmentation head estimates per-point moving
probabilities Ŝ ∈ RN :

MLP (512 → 256 → 128 → 64 → 1).

Ego-motion head. The purpose of our ego-motion head
is to derive a rigid transformation T̂ that can summarize
the scene flow rigid component induced by the radar ego-
motion. To that end, we leverage the differentiable weighted
Kabsch algorithm [7] that solves the ego-motion estimation
problem in a close form through:

T̂∗ = argmin
T̂∈R4×4

N∑
i=1

wi||(R̂csi + t̂)− cwi ||22, (1)

where cwi = csi + f̂ initi is the point coordinate warped by
the initial scene flow. The sum of all weights is normalized
as

∑N
i=1 wi = 1, and

T̂ =

[
R̂ t̂
0 1

]
∈ R4×4, (2)

where R ∈ R3×3 is the rotation matrix and t ∈ R3 is the
translation vector. In our method, we compute the weights
from the estimated moving probabilities Ŝ via:

wi =
1− ŝi∑N

i=1 (1− ŝi)
. (3)

To solve Eq. (1), the first step is to compute the centred point
coordinates for Cs = {csi}Ni=1 and Cw = {cwi }Ni=1. To do
that, the weighted centroid of Cs and Cw can be derived
through:

c̄s =

N∑
i=1

wic
s
i , c̄w =

N∑
i=1

wic
w
i (4)

We subtract the centroid coordinates from Cs and Cw and
obtain the centered point coordinates C̃s ∈ RN×3 and
C̃w ∈ RN×3. A weighted covariance matrix Hw ∈ R3×3

can then be formulated as:

Hw = C̃s⊤diag(w1, w2, ..., wN)C̃w. (5)

2

Symbol Meaning Dimension Symbol Meaning Dimension

Ps Input source point cloud RN×(3+C) Pt Input target point cloud RM×(3+C)

ps
i ,p

t
i i-th point of Ps, Pt R3+C csi , c

t
i 3D coordinate of point ps

i ,p
t
i R3

xs
i ,x

t
i Associated raw features of point ps

i ,p
t
i RC N Number of points in the source point cloud R

M Number of points in the target point cloud R C Number of channels of the associated raw features R
F Scene flow between two input point clouds RN×3 fi Scene flow vector of the point ps

i R3

c′i 3D coordinate of point ps
i after warped by fi R3 L Total loss value R

Lego Ego-motion loss value R Lseg Motion segmentation loss value R
Lscene Scene flow loss value R E Base backbone features RN×Ce

Ce Number of channels of the backbone features R F̂init Initial scene flow estimation RN×3

f̂ initi Initial scene flow vector estimation of point ps
i R3 Ŝ Estimated moving probabilities RN

ŝi Estimated moving probability of point ps
i R T̂ Estimated rigid transformation R4×4

I4 Identity matrix R4×4 F̂ Final scene flow estimation RN×3

f̂i Final scene flow vector estimation of point ps
i R3 T The length of mini-clips used for temporal update R

O Ground truth ego-motion transformation R4×4 T Ground truth rigid transformation R4×4

Fr Ground truth rigid flow components RN×3 fri Ground truth rigid flow component of point ps
i R3

vi Radar RRV measurement of point ps
i R vri RRV component ascribed to the radar ego-motion R

ui The unit radial vector of the point ps
i R3 ∆t Time duration between two frames R

∆vi Absolute radial velocity of the point ps
i R Sv Pseudo motion segmentation labels from RRV RN

svi Pseudo motion segmentation label for ps
i from RRV R Sfg Pseudo foreground segmentation labels from LiDAR RN

Ffg Pseudo scene flow labels from LiDAR RN×3 ffgi Pseudo scene flow label for ps
i from LiDAR R3

Sl Pseudo motion segmentation labels from LiDAR RN sli Pseudo motion segmentation label for ps
i from LiDAR R

S Final pseudo motion segmentation labels RN si Final motion segmentation label for ps
i R

Lmot MOT-based scene flow loss value R Lopt Optical flow-based scene flow loss value R
Lself Self-supervised scene flow loss value R W Pseudo optical flow labels RN×2

wi Pseudo optical flow vector label for point ps
i R2 mi Corresponding image pixel of point ps

i R2

λopt Weighting parameter for Lopt R θ Sensor calibration parameters -
D(·, ·, ·) Point-to-ray distance computing function - || · ||2 L2-norm, also known as Euclidean Distance -

Table B. A list of all used symbols with their meanings and dimension in our approach.

The optimal rotation matrix R̂∗ is solved by:

R̂∗ = V

1 0 0
0 1 0
0 0 d

U, (6)

where the singular value decomposition (SVD) is used in
Hw = UΣV and d = sign(det(VU⊤)) is the correction
value to avoid special reflection cases. As the final step, we
compute the optimal translation vector as:

t̂∗ = c̄w − R̂∗c̄s. (7)

Temporal update module. This module is embedded in
our backbone module and its use in our method is op-
tional. If enabled, it can propagate information from pre-
vious frames to the current frame. As a reminder, be-
fore we generate our base backbone feature E, we get
the local features L ∈ RN×256 with another multi-scale
set conv layer. The global feature vector is obtained by
G ∈ R256 = MAX(L), where MAX is the max-pooling
operation along the channel axis. Our temporal update mod-
ule operates on G and applies a GRU network [4] to update
it as a hidden state temporally, as seen in Fig. A.

Time

GRU GRU

Max-pooling

tile tile

Max-pooling

Figure A. Temporal update module. We concatenate the updated
hidden state H to each point feature when activating this module,
while we use the global feature vector G directly when the updat-
ing module is disabled. Note that the superscript (e.g., l) denotes
the temporal order index and we discard it in other places.

D. Cross-Modal Supervision Details

In this section, we provide some implementation details
on cross-modal supervision retrieving and loss formulation.

3

Strategy for generate pseudo label Sv . As introduced in
the main text, we propose to generate a pseudo motion seg-
mentation label Sv with the odometry information and radar
RRV measurements. As a reminder, the pseudo label Sv is
created by thresholding the ego-motion compensated RRV
∆vi, i.e., the absolute radial velocity. Next, we will discuss
our specific thresholding strategy.

Given per-point ∆vi, it is intuitive to generate a mo-
tion segmentation mask by labelling points with larger val-
ues than a fixed threshold as moving points. However,
this straightforward strategy suffers from the temporal off-
set between the well-curated keyframes and original radar
point clouds. Even though the coordinates of radar points
are transformed to the timestamp of keyframes using high-
frequency odometry information, their RRV measurements
still correspond to the original timestamps. As a result, there
is often a non-trivial global bias in ∆vi, which disturbs the
identification of real moving points given a fixed threshold.
For example, almost all points could be classified as moving
when a large bias exists. To mitigate this issue, we propose
to normalize all ∆vi by subtracting their mean value µ and
then classify points by thresholding. The pseudo motion
segmentation label Sv = {svi ∈ {0, 1}}Ni=1 can then be cre-
ated with a fixed threshold ηv , where 0 represents stationary
points. We determine the value of ηv via grid searching on
the Val set, as seen in Fig. B.

To validate if our bias-aware strategy helps to improve
the quality of pseudo motion segmentation labels Sv , we
compare this advanced strategy to the direct (i.e. not bias-
aware) one. As the pseudo motion segmentation label gen-
eration is affected by the threshold ηv , we iteratively change
its value and observe how the mIoU between the ground
truth and pseudo motion segmentation labels varies with
the threshold. Fig. B shows the comparison between di-
rect thresholding and bias-aware thresholding on the Val
set. Without considering the global bias of residuals, di-
rect thresholding can only give a maximum mIoU of 48.4%,
while our proposed bias-aware thresholding produces a
mIoU of 52%1. The results demonstrate the effectiveness
of our advanced strategy to tackle the temporal misalign-
ment of ego-motion and RRV measurements. Moreover, as
shown in the top of Fig. B, the mIoU increases to near 50%
only when the threshold is large enough (> 1.0m/s), which
further proves the presence of a global bias in ∆vi. For the
best quality of pseudo label Sv , we set ηv = 0.3 in all our
experiments according to the results on the Val set exhibited
in Fig. B.
LiDAR multi-object tracking. As another active ranging
sensor, LiDAR can detect targets and measure their 3D po-
sitions by emitting pulsed lasers [11]. Compared with 4D
radar, it can restore the geometric structure well with denser

1Note that tangentially moving targets are not distinguished in the
pseudo label Sv because radar only measures the relative radial velocity.

0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8
threshold [m/s]

0.25
0.30
0.35
0.40
0.45
0.50

m
Io

U

direct thresholding

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
threshold [m/s]

0.500
0.505
0.510
0.515
0.520
0.525

m
Io

U

bias-aware thresholding

Figure B. The impact of threshold ηv when applying direct and
bias-aware thresholding to generate pseudo motion segmentation
labels Sv with the ego-motion and RRV measurements. Here,
mIoU is computed between the ground truth motion segmentation
labels and the generated pseudo one on the Val set.

point data under satisfactory weather conditions. Some re-
cent works [20, 21, 23] perform 3D multi-object tracking
(MOT) on LiDAR point clouds in a tracking-by-detection
paradigm and show prominent results. Inspired by the
progress, we propose to extract supervision signals from
LiDAR by running 3D MOT algorithms on LiDAR point
clouds. The method we employ is called AB3DMOT [20],
which first detects 3D bounding boxes with a pretrained
PointRCNN [15] model and tracks objects based on a 3D
Kalman filter [8]. To implement this method, we first use
the OpenPCDet2 library and adopt the pretrained PointR-
CNN model to perform the object detection stage. The x,
y, z range is set to [(0, 70.4), (-40, 40), (-3, 1)] meters re-
spectively and the number of points is set as 4096 follow-
ing the original paper [15]. Similar to the authors of the
VoD dataset [14], we only detect three classes of object, i.e.
pedestrian, cyclist and car, as foreground objects. For the
tracking part, we use the official code3 and take the detec-
tion results as input. Specifically, we set the minimal birth
length Birmin as 4 and the maximum death length Agemax

as 8. The centre distance threshold for object association is
2 meters. As a result, the 3D MOT algorithm can give us a
set of estimated bounding boxes and their track IDs for each
frame.
Optical flow loss Lopt. Different from LiDAR or radar
point clouds, RGB images contain explicit object appear-
ance and texture information, which provide rich semantics
cues for inferring pixel-level 2D motions between frames,
i.e., optical flow estimation. As a 2D perspective projec-
tion of 3D scene flow, optical flow describes the motion
of points on the image plane. Thus it can also be used
to partially supervise the scene flow estimation of points,
whose perspective projection is within the camera field-of-

2https://github.com/open-mmlab/OpenPCDet
3https://github.com/xinshuoweng/AB3DMOT

4

Figure C. Left figure: Blue denotes two points (i.e., csi , csj) from
the source point cloud Ps and their perspective projection mi,mj

on the corresponding image Is. Red arrows denote pseudo opti-
cal flow labels wi,wj and their possible 3D projections (dashing
line). Right figure: Yellow denotes the predicted scene flow vec-
tors f̂i, f̂j and their corresponding optical flow after perspective
projection. Magenta denotes warped points cwi , c

w
j and their per-

spective projection on image Is. li and lj denote the corresponding
rays of pixels warped by pseudo optical flow labels.

view (FoV). Thanks to the advance in data-driven optical
flow estimation [16, 17], we can use a pretrained model to
infer pseudo optical flow labels efficiently. For one pair of
Ps and Pt, we can input their synchronized monocular im-
ages Is and It into the network and obtain an optical flow
map. We adopt the RAFT-S [17] pretrained model4 to es-
timate our optical flow. The number of iterations is set as
12 in practice. After drawing per-point optical flow vec-
tor W = {wi ∈ R2}Ni=1, we formulate our optical flow
loss to constrain our scene flow prediction in the perspective
view. In the main text, due to the depth-unawareness during
perspective projection, we propose to minimize the point-
to-ray distance instead of the flow divergence in pixel scale.
Our motivation is further illustrated in Fig. C, where a larger
distance between the warped point cwj and the expected ray
lj results in a smaller pixel-scale loss after perspective pro-
jection for a farther point csj . In practice, we discard point-
to-ray distances lower than 0.25m when computing the loss
to mitigate the impact of optical flow estimation errors.
Self-supervised loss. Motivated by self-supervised scene
flow works [1, 5, 10, 13, 22], we also utilize self-supervised
loss functions to complement our cross-modal supervised
learning. Specifically, we leverage three self-supervised
loss functions from [5] and keep their default hyperparame-
ter settings. The first one is called soft Chamfer loss, which
constrains scene flow by pulling mutual pseudo correspon-
dences between the target point cloud Pt and the warped
source point cloud Pw close to each other. In practice, the
noise from outliers is mitigated and small errors led by low-

4https://github.com/princeton-vl/RAFT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
classification threshold b

0.0498
0.0504
0.0510

St
at

. R
NE

 [m
]

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
classification threshold b

0.0704
0.0708
0.0712

M
ov

. R
NE

 [m
]

Figure D. Impact of the classification threshold ηb on the Val set.
The value is changed from 0.1 to 0.9 by a step of 0.1.

T EPE [m]↓ AccS↑ AccR↑ RNE [m]↓

1 0.132 0.263 0.552 0.053
3 0.128 0.280 0.560 0.051
5 0.122 0.295 0.579 0.049
7 0.131 0.264 0.560 0.053
10 0.129 0.260 0.551 0.052
15 0.142 0.203 0.488 0.057

Table C. Impact of the mini-clip length for temporal feature up-
date. The results shown above are obtained by evaluating our CM-
Flow (T) method on the Val set. The best T (bold) are used for
experiments on the Test set.

resolution are discarded, to make the loss soft to intractable
radar point clouds. The second loss is spatial smoothness
loss, which is used for local consistency in scene flow es-
timation. In particular, a distance-based weight is com-
puted at first and then the spatial smoothness of the pre-
dicted scene flow is enforced accordingly. The third loss
is called radial displacement loss, where the radial projec-
tions of estimated scene flow are constrained by the RRV
measurements.

E. More Experimental Analysis
Impact of the classification threshold ηb. As an important
hyperparameter, ηb is used to threshold the estimated mov-
ing probabilities Ŝ to generate the binary motion segmen-
tation mask during inference, which further determines the
flow vectors of which points are refined with the ego-motion
estimation. To select its optimal value, we run a series of
evaluations on the Val set with the trained CMFlow model
and show the results in Fig. D. As we increase the threshold
value, the performance on Stat.RNE gets improved contin-
uously, however the optimal threshold for Mov.RNE is 0.5.
Considering that the scene flow accuracy on both moving
and static points is crucial, we aim to seek a trade-off be-
tween Stat. RNE and Mov. RNE. We thus set the ηb = 0.5
as the optimal value for our experiments.
Impact of the mini-clip length T . When activating our

5

Method EPE [m]↓ AccS↑ AccR↑ RNE [m]↓

FlowNet3D [12] 0.201 0.169 0.379 0.081
PointPWC-Net [22] 0.196 0.177 0.391 0.079
FlowStep3D [9] 0.286 0.061 0.185 0.115
PV-RAFT [19] 0.126 0.258 0.587 0.051
3DFlow [18] 0.277 0.104 0.294 0.111
Bi-PointFlowNet [3] 0.242 0.164 0.350 0.097

Table D. Comparison between fully-supervised radar scene flow
methods on the Test set. All methods are trained using the same
annotated training samples with ground truth scene flow.

temporal update module in the backbone, we can update
the global feature vector temporally to propagate informa-
tion from previous frames. However, training with long
sequences in a brute-force way will lead to non-negligible
over-fitting. To mitigate the issue, we split long training se-
quences into many mini-clips with a length of T and train
mini-batches of them. During inference, the hidden state is
re-initialized after T frames to emulate the training condi-
tions. Here, we exhibit how to select the optimal T value
in our experiments, as seen in Tab. C. As we increase the
value of T , the performance on the Val set improves be-
cause temporal information from more previous frames can
be used for the current frame. However, when the value
of T exceeds 5, the performance starts to degrade and be-
comes even worse than the one without temporal update
when T = 15. We attribute this to two reasons. First,
as we discuss above, longer clips can exacerbate the over-
fitting issue. Second, using long-term information from ear-
lier frames will introduce more noise and disturb the current
feature extraction.
Performance of fully-supervised methods. In our main
experiments, we are interested in if our performance could
catch up or surpass that of fully-supervised methods when
more unannotated data is available for training. As a
reminder, we select the state-of-the-art fully-supervised
method, PV-RAFT [19], for comparison. Here for com-
pleteness, we also evaluate another five fully-supervised
methods and compare them together with PV-RAFT [19]
in Tab. D. Note that we use all available annotated samples
in Train set and label their ground truth scene flow with ob-
ject annotations (c.f. Sec. A) for fully-supervised training.
Under the same training setting, PV-RAFT [19] achieves
the best results among fully-supervised methods. This fur-
ther proves its state-of-the-art performance and supports
our choice of PV-RAFT as the compared fully-supervised
method when more unannotated training data is available.
Impact of self-supervised loss. As a complement to our
cross-modal supervision, the self-supervised loss can ex-
ploit the inherent spatio-temporal relationship and con-
straints in the input data to bootstrap scene flow learning.
Here, we analyse its impact by ablating it from our method.

Method EPE [m]↓ AccS↑ AccR↑ RNE [m]↓

w.o. Lself 0.152 0.221 0.494 0.061
w. Lself 0.141 0.233 0.499 0.057
Gain -0.011 +0.012 +0.005 -0.004

Table E. Analysis of the impact of self-supervise loss. For the top
row, we ablate the self-supervised loss during training.

L (seg) L (flow) EPE [m]↓ AccS↑ AccR↑ RNE [m]↓

(a) 0.159 0.216 0.458 0.064
(b) ✓ 0.156 0.221 0.467 0.063
(c) ✓ 0.152 0.217 0.477 0.061
(d) ✓ ✓ 0.141 0.223 0.499 0.057

Table F. Ablation study for LiDAR modality. L (seg) denotes that
the LiDAR supervision is used for generating pseudo motion seg-
mentation labels, while L (flow) denotes that the LiDAR supervi-
sion is used to formulate the scene flow loss.

The results are shown in Tab. E. With the self-supervised
loss, the performance of CMFlow improves in all met-
rics. This demonstrates that combining self-supervised and
cross-modal supervision provides complementary learning
cues and leads to more accurate scene flow estimation.

Impact of LiDAR modality. In our cross-modal supervised
learning pipeline, LiDAR supervision is used in two ways to
support our model training. One is to generate a pseudo mo-
tion segmentation label Sl, which is further used to obtain
a more reliable label S after fusing with Sv . Another is to
provide the pseudo scene flow label Ffg used to formulate
the loss Lmot that supervises the final scene flow. Here, we
analyze the impact of LiDAR modality in these two ways.
As seen in Tab. F, the LiDAR modality contributes to our
improvement gain in both aspects. First (c.f. row (b)), us-
ing the pseudo label Sl can effectively complement the label
Sv where tangentially moving targets are not distinguished.
Second (c.f. row (c)), the scene flow loss Lmot can con-
strain the scene flow vectors of identified moving points in
Sl. When using the LiDAR modality in both ways, an even
larger improvement can be achieved. This demonstrates that
each supervision component in our framework is significant
and correlates to each other compactly.

Runtime efficiency. We evaluate the computational effi-
ciency of CMFlow on a PC with a single RTX 3090 GPU.
To emulate real-world processing, one sample is fed into our
model per time. Our method contains 4.23 million model
parameters and performs one inference step in 0.069 sec-
onds on average (∼14 Hz). The maximum allocated GPU
memory is 162 MB during inference. It can be seen that
our method can achieve satisfactory real-time performance
while having relatively low GPU memory consumption.

6

F. More Qualitative Results
Scene flow estimation. More qualitative scene flow results
are shown in Fig. E. It can be seen that CMFlow can accu-
rately estimate scene flow vectors in diverse driving scenar-
ios. After warping the source point cloud with the estimated
scene flow, both static background and multiple dynamic
objects can be aligned well between two frames.
Motion segmentation. Additional qualitative results for
the motion segmentation task can be seen in Fig. F. Without
any ground truth labels used for training, our method results
in accurate motion segmentation in dynamic environments.
Different moving objects (e.g., car, cyclist, pedestrian) can
be segmented from the static background well.
Ego-motion estimation. We show more qualitative odom-
etry results in Fig. G. As a byproduct of our method, the
estimated rigid ego-motion transformation can effectively
support the odometry task in complex urban driving scenar-
ios. Compared to the baseline ICP [2] that directly solves
the transformation with all points, CMFlow can distinguish
and mitigate the impact of moving points, and thus has bet-
ter odometry performance in dynamic environments.

References
[1] Stefan Andreas Baur, David Josef Emmerichs, Frank Moos-

mann, Peter Pinggera, Björn Ommer, and Andreas Geiger.
SLIM: Self-Supervised LiDAR Scene Flow and Motion Seg-
mentation. In CVPR, pages 13126–13136, 2021. 1, 5

[2] P.J. Besl and Neil D. McKay. A method for registration of
3-D shapes. PAMI, 14(2):239–256, 1992. 7

[3] Wencan Cheng and Jong Hwan Ko. Bi-PointFlowNet: Bidi-
rectional Learning for Point Cloud Based Scene Flow Esti-
mation. In ECCV, pages 108–124, 2022. 6

[4] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau,
and Yoshua Bengio. On the Properties of Neural Machine
Translation: Encoder–Decoder Approaches. In SSST, pages
103–111, 2014. 3

[5] Fangqiang Ding, Zhijun Pan, Yimin Deng, Jianning Deng,
and Chris Xiaoxuan Lu. Self-Supervised Scene Flow Esti-
mation With 4-D Automotive Radar. RA-L, pages 1–8, 2022.
5

[6] Philipp Jund, Chris Sweeney, Nichola Abdo, Zhifeng Chen,
and Jonathon Shlens. Scalable scene flow from point clouds
in the real world. RA-L, 7(2):1589–1596, 2021. 1

[7] Wolfgang Kabsch. A solution for the best rotation to re-
late two sets of vectors. Acta Crystallogr. A, 32(5):922–923,
1976. 2

[8] Rudolph Emil Kalman. A New Approach to Linear Filtering
and Prediction Problems. J. Basic Eng., 82(1):35, 1960. 4

[9] Yair Kittenplon, Yonina C Eldar, and Dan Raviv. Flow-
Step3D: Model Unrolling for Self-Supervised Scene Flow
Estimation. In CVPR, pages 4114–4123, 2021. 6

[10] Ruibo Li, Guosheng Lin, and Lihua Xie. Self-Point-Flow:
Self-Supervised Scene Flow Estimation from Point Clouds
with Optimal Transport and Random Walk. In CVPR, pages
15577–15586, 2021. 5

[11] You Li and Javier Ibanez-Guzman. Lidar for autonomous
driving: The principles, challenges, and trends for automo-
tive lidar and perception systems. IEEE SPM, 37(4):50–61,
2020. 4

[12] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
FlowNet3D: Learning Scene Flow in 3D Point Clouds. In
CVPR, pages 529–537, 2019. 2, 6

[13] Himangi Mittal, Brian Okorn, and David Held. Just go with
the flow: Self-supervised scene flow estimation. In CVPR,
pages 11177–11185, 2020. 5

[14] Andras Palffy, Ewoud Pool, Srimannarayana Baratam, Ju-
lian FP Kooij, and Dariu M Gavrila. Multi-class Road User
Detection with 3+ 1D Radar in the View-of-Delft Dataset.
RA-L, 7(2):4961–4968, 2022. 1, 4

[15] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. PointR-
CNN: 3D Object Proposal Generation and Detection from
Point Cloud. In CVPR, pages 770–779, 2019. 4

[16] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
Pwc-net: Cnns for optical flow using pyramid, warping, and
cost volume. In CVPR, pages 8934–8943, 2018. 5

[17] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In ECCV, pages 402–419, 2020.
5

[18] Guangming Wang, Yunzhe Hu, Zhe Liu, Yiyang Zhou,
Masayoshi Tomizuka, Wei Zhan, and Hesheng Wang. What
Matters for 3D Scene Flow Network. In ECCV, pages 38–55,
2022. 6

[19] Yi Wei, Ziyi Wang, Yongming Rao, Jiwen Lu, and Jie Zhou.
PV-RAFT: point-voxel correlation fields for scene flow esti-
mation of point clouds. In CVPR, pages 6954–6963, 2021.
6

[20] Xinshuo Weng, Jianren Wang, David Held, and Kris Kitani.
3D Multi-Object Tracking: A Baseline and New Evaluation
Metrics. In IROS, pages 10359–10366, 2020. 4

[21] Xinshuo Weng, Yongxin Wang, Yunze Man, and Kris M Ki-
tani. GNN3DMOT: Graph Neural Network for 3D Multi-
Object Tracking With 2D-3D Multi-Feature Learning. In
CVPR, pages 6499–6508, 2020. 4

[22] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. PointPWC-Net: Cost Volume on Point Clouds for
(Self-) Supervised Scene Flow Estimation. In ECCV, pages
88–107, 2020. 2, 5, 6

[23] Tianwei Yin, Xingyi Zhou, and Philipp Krahenbuhl. Center-
based 3d object detection and tracking. In CVPR, pages
11784–11793, 2021. 4

7

Input Ours Ground TruthRGB Image

Figure E. Qualitative scene flow results in seven Test scenes. From left to right: 1) radar points from the source frame projected to the
corresponding RGB image (points are coloured by distance from the sensor), 2) two input radar point clouds, the source one (pink) and the
target one (green), 3) the source point cloud warped by our predicted scene flow and the target radar point cloud, 4) the source point cloud
warped by ground truth scene flow and the target one. We mark regions of interest in amber and apply the zooming-in operation for them.

8

RGB Image Prediction Ground Truth

Figure F. Visualization of motion segmentation. The left column shows the corresponding image with radar points (coloured by range)
projected onto it. In the middle and right columns, moving points are shown in orange while static points are shown in blue.

9

OursGround Truth ICP

Figure G. Qualitative odometry results in five Test sequences. To plot the ego-vehicle trajectory, inter-frame ego-motion transformations
are accumulated temporally. Please see the supplementary video for dynamic trajectory results.

10

