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This appendix includes the following:

1. Extended description of Related Work in Section A.

2. Additional results of configurations on NLPs-based
feature extraction in Section B.

3. Extended description of datasets and baseline methods
in Section C.

A. An Extended Description of Related Work
Existing methods related to MTL architectures can be

classified into encoder or decoder-focused ones. Encoder-
focused approaches primarily lay emphasis on architec-
tures that can encode multi-purpose feature representa-
tions through supervision from multiple tasks. Such en-
coding is typically achieved, for example, via feature fu-
sion [5,12,14], branching [7,10,11,19], self-supervision [3],
shared and task-specific modules [8,13], filter grouping [1],
filter modulation [6, 27], task routing [12, 16, 18], or neu-
ral architecture search [4]. Decoder-focused approaches
start from the feature representations learned at the encod-
ing stage, and further refine them at the decoding stage
by distilling information across tasks in a one-off [22], se-
quential [24], recursive [25], or even multi-scale [20] man-
ner. Due to inherent layer sharing, the approaches above
typically suffer from task interference and negative trans-
fer [21].

In the context of MTL, our explicit task routing layer
is conceptually related to [8, 13], but notably different in
motivation and design. First, both of these two approaches
operate on the features obtained from a shared backbone
to extract task-specific features. In contrast, our shared
and task-specific branches operate in parallel and extract
features from the common features extracted by the non-
learnable layer. Second, these existing approaches utilize
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attention mechanisms to distill task-specific features from
the shared features, while we use lightweight 1 × 1 convo-
lution for the same purpose. Third, our explicit task rout-
ing layer is tailored to exploit the non-learnable layer for
MTL optimally. Finally, unlike baselines, our multi-branch
design affords simple and explicit control over the ratio of
shared and task-specific parameters.

Additionally, our work is also closely related to reparam-
eterized convolutions for multi-task learning (RCM) [6],
which first introduced the concept of using non-learnable
convolutional filters for MTL. However, there are three no-
table differences. First, the non-learnable layer of RCM
only includes standard convolution, while we consider other
non-learnable primitives such as pooling, identity, and ad-
ditive noise [23] operations. Second, RCM uses pre-trained
network weights to initialize non-learnable convolutional
filters, while in our case they are sampled from a random
distribution. Relying on pre-trained weights limits RCM’s
ability to reduce the model size and its generalizability to
architectures without readily available pre-trained weights.
Finally, there is no collaboration between tasks in RCM as
it only comprises task-specific modulators, while we uti-
lize a shared branch to help tasks use each other’s training
signals. Having both shared and task-specific branches al-
lows tasks to amortize parameters that are commonly useful
across multiple tasks, thereby minimizing redundancy in the
task-specific branches, unlike RCM. Moreover, our method
also offers fine-grained control over the ratio of parameters
that are shared or task-specific.

B. Results of NLPs-based feature extraction
In this section, we first provide the full version of Table

1 from the main paper in Table S1, showing the effect of
different configurations of NLPs on CelebA multi-attribute
classification. Then, we present the effect of different hy-
perparameter settings of NLPs on NYU-v2 dense prediction
MTL problem in Figure S1.
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Table S1. Effect of different configurations of NLPs on CelebA
multi-attribute classification.

Non-learnable Operators CelebA

Avg. pool Max pool Conv Shift Noise Precision Recall F-Score

✓ 73.37±0.19 59.00±0.11 61.08±0.17

✓ ✓ 72.50±0.13 57.87±0.09 61.10±0.12

✓ 72.29±0.14 58.65±0.27 61.30±0.04

✓ ✓ ✓ 73.24±0.17 58.87±0.30 61.46±0.13

✓ ✓ ✓ ✓ 73.37±0.31 58.67±0.07 61.56±0.24

✓ ✓ 72.92±0.13 58.76±0.08 61.57±0.06

✓ ✓ ✓ 73.51±0.39 59.47±0.25 61.81±0.15

✓ ✓ 72.80±0.33 59.39±0.13 61.83±0.20

✓ ✓ ✓ 72.93±0.15 59.47±0.15 62.04±0.20

✓ 73.56±0.18 59.90±0.14 62.16±0.07

✓ ✓ 73.52±0.62 59.16±0.08 62.19±0.24

✓ ✓ 74.23±0.48 59.68±0.17 62.36±0.13

✓ ✓ ✓ 73.97±0.47 59.85±0.17 62.41±0.08

✓ ✓ 74.81±0.39 59.84±0.29 62.84±0.11

✓ 74.75±0.36 60.49±0.05 63.03±0.32

✓ ✓ ✓ ✓ ✓ 74.56±0.24 61.24±0.61 64.08±0.21

✓ ✓ ✓ ✓ 74.38±0.10 61.13±0.10 64.14±0.02

✓ ✓ ✓ ✓ 74.24±0.08 61.14±0.29 64.21±0.09

✓ ✓ ✓ ✓ 74.50±0.30 61.17±0.46 64.32±0.04

✓ ✓ ✓ 74.40±0.32 62.07±0.19 64.51±0.22

✓ 75.67±0.25 59.74±0.33 64.54±0.21

✓ ✓ ✓ 74.35±0.03 62.18±0.16 64.61±0.15

✓ ✓ ✓ 74.91±0.14 62.16±0.34 64.65±0.05

✓ ✓ ✓ ✓ 75.35±0.10 61.99±0.20 65.03±0.02

✓ ✓ 74.61±0.14 61.93±0.23 65.07±0.05

✓ ✓ ✓ 75.31±0.22 62.89±0.21 65.42±0.15

✓ ✓ ✓ 75.50±0.15 62.70±0.41 65.65±0.16

✓ ✓ 75.74±0.29 62.80±0.19 65.81±0.13

✓ ✓ 75.72±0.08 63.19±0.39 66.08±0.10

✓ ✓ ✓ 75.82±0.29 63.19±0.36 66.26±0.25

✓ ✓ 76.29±0.25 62.47±0.60 66.40±0.32

Standard learnable convolution 67.67±0.75 59.84±0.33 62.86±0.07

C. Description of Datasets and Baselines
In this section, we first provide the additional details of

CelebA and Cityscapes datasets in Table 1 and 2, respec-
tively. Then, we provide a brief overview of the baseline
methods that we compared against in this work, as follows:

• STL: single task learning with one network for each
task.

• Hard sharing: standard multi-task learning, i.e., a fully
shared network with uniform task weighting.

• GradNorm [26]: a MTL method with a fully shared
network and learnable tasks weighting.

• MGDA-UB [17]: a multi-objective alternative to MTL
with a fully shared network.

• Task Routing [18]: a parameter partitioning method
with randomly initialized binary masks.

• Max. Roaming [15]: another parameter partitioning
method with dynamic masks.

• Cross-stitch [14]: a soft-sharing method with feature
fusion.

• MTAN [8]: another soft-sharing method with atten-
tion.
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(a) Avg. pooling
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(b) Max pooling
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(c) Perturbation
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(d) Convolution (sparsity)
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(e) Convolution (kernel size)

Figure S1. Effect of different hyperparameters of individual NLP
on NYU-v2 dense prediction MTL problem. For each sub-figure
(a) - (e), we show the semantic segmentation mIoU (↑), depth es-
timation absolute error (↓), and surface normal estimation mean
error (↓).
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the 7-class setting.
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