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In this supplementary file, we provide more experimental
results and details not elaborated on in our main paper due
to page length limits:

• Sec. S1: Details of our open-vocabulary scene under-
standing benchmark.

• Sec. S2: Limitation analysis of PointCLIP for scene
understanding tasks.

• Sec. S3: Additional experimental results on re-
partition results, per-class results, error bar results,
fully-supervised results with caption supervision and
combination of caption supervisions.

• Sec. S4: Examples of image-caption pairs and hierar-
chical point-caption pairs.

• Sec. S5: Qualitative results of open-vocabulary scene
understanding.

• Sec. S6: Limitation and open problems.

S1. Implementation Details
Here, we present the implementation details of dataset

category partition, network modifications, baseline setups,
hyper-parameter configurations and usage of images.

S1.1. Dataset Category Partition

As mentioned in Sec. 4.1 of the main paper, we build
a 3D open-vocabulary benchmark on ScanNet [5] and
S3DIS [2] with multiple base/novel partitions. ScanNet [5]
consists of 1,613 scenes (1,201 scenes for training, 312
scenes for validation and 100 for testing) densely annotated
in 20 classes. We discard the ‘otherfurniture’ class and par-
tition the rest 19 classes into three partitions for semantic
segmentation as shown in Table S1. Note that the B15/N4
partition adheres to the 3DGenZ [11] partitioning scheme.
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As for instance segmentation, we follow SoftGroup [15] to
ignore two background classes (i.e. wall and floor) and ob-
tain corresponding partitions (see Table S2).

S3DIS [2] contains 271 scans across 6 building areas
along with 13 categories. Following previous work [12],
we treat the 5th area as the validation split and other areas
as the training split. We discard the ‘clutter’ class and parti-
tion the rest 12 classes into two partitions for both semantic
segmentation and instance segmentation as demonstrated in
Table S3.

S1.2. Network Modifications

In this section, we elaborate on how to extend a close-
set network to an open-vocabulary learner for semantic seg-
mentation and instance segmentation. We employ sparse-
convolution-based UNet [6] with a base hidden dimension
of 16 as our backbone F3D.

First, as illustrated in Fig. S1 (a), the close-set network
contains a learnable semantic head Fsem that classifies a
fixed number of categories. As discussed in Sec. 3.2 in
the main paper, to obtain an open-vocabulary model, we re-
place the semantic head Fsem with a vision-language (VL)
adapter Fθ and the category embedding f l encoded by a
fixed text encoder Ftext. Note that the category embedding
f l can be treated as replacing the weights of the classifier.
The category embedding f l encodes semantic attributes of
base classes in the training stage and encodes any desired
categories during inference to achieve open-vocabulary se-
mantic segmentation.

Further, as we follow SoftGroup [15] to develop instance
head Fins, we modify the close-set designs in SoftGroup to
obtain an open-vocabulary instance head. First, as shown in
Fig. S2, the seg head and the score head that produce per-
class confidence in the vector form are modified to class-
agnostic modules that produce a single scalar for each gen-
erated instance proposal. In this way, we can train these
two heads without needing to know novel categories. Sec-
ond, the learnable cls head that predicts the classification
scores of generated proposals is replaced by the proposal-
level pooling of semantic scores s, which can be extended
to arbitrary categories. Finally, the class statistics, such as
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Partition Base Categories Novel Categories

B15/N4
wall, floor, cabinet, bed, chair, table, door, window, picture,
counter, curtain, refrigerator, showercurtain, sink, bathtub

sofa, bookshelf, desk, toilet

B12/N7
wall, floor, cabinet, sofa, door, window, counter, desk,
curtain, refrigerator, showercurtain, toilet

bed, chair, table, bookshelf, picture, sink, bathtub

B10/N9
wall, floor, cabinet, bed, chair, sofa, table, door, window,
curtain

bookshelf, picture, counter, desk, refrigerator, showercurtain,
toilet, sink, bathtub

Table S1. Category partitions for open-vocabulary semantic segmentation on ScanNet.

Partition Base Categories Novel Categories

B13/N4
cabinet, bed, chair, table, door, window, picture,
counter, curtain, refrigerator, showercurtain, sink, bathtub

sofa, bookshelf, desk, toilet

B10/N7
cabinet, sofa, door, window, counter, desk, curtain,
refrigerator, showercurtain, toilet

bed, chair, table, bookshelf, picture, sink, bathtub

B8/N9 cabinet, bed, chair, sofa, table, door, window, curtain
bookshelf, picture, counter, desk, refrigerator, showercurtain,
toilet, sink, bathtub

Table S2. Category partitions for open-vocabulary instance segmentation on ScanNet.

the average number of points in an instance mask for each
class, which assists proposal grouping, are removed to avoid
leakage of novel class information. We empirically show
that those modifications cause little degradation of fully-
supervised performance by 1.1% mAP50, as demonstrated
in Table S4. Note that we train the model from scratch
rather than fine-tuning a supervised pretrained model, as
SoftGroup does, to prevent leakage of novel classes during
training. Additionally, we use a smaller hidden dimension
size for the UNet backbone. Consequently, our reproduced
performance differs from that in the original paper.

S1.3. Baseline Setups

As mentioned in Sec. 4.1 of the main paper, we fol-
low LSeg [9] to implement LSeg-3D as a baseline with
UNet [6, 4] backbone, vision-language adapter imple-
mented by MLP and the CLIP [13] ViT-B/16 text encoder.
For the other two 3D zero-shot methods, 3DGenZ [11] and
3DTZSL [3], we reproduce them with the same network and
CLIP text embedding for fair comparisons. Specifically, for
3DGenZ [11], instead of training on samples that only con-
tain base classes, we train it on the whole training dataset
with points belonging to novel classes ignored during opti-
mization. Besides, we remove calibrated stacking that aims
to alleviate bias towards seen classes since it brings ex-
tremely minor performance gains in our implementations.
As for 3DTZSL [3] designed for object classification, we
extend it to segmentation via learning with triplet loss on
the point level instead of the sample level. We implement
its projection net with 2 fully-connected layers and the Tanh
activation function, the same as its paper claimed.

S1.4. Hyper-Parameter Configurations

We train 19,216 iterations on ScanNet and 4,080 iter-
ations on S3DIS for semantic segmentation. For instance
segmentation, we train 24,020 iterations on ScanNet and
9,160 iterations on S3DIS. The learning rate is initialized
as 0.004 with cosine decay. We adopt the AdamW [10]
optimizer and run all experiments with 32 batch size on 8
NVIDIA V100 or NVIDIA A100.

For entity-level captions, we filter out some ⟨p̂e, te⟩
pairs to guarantee the point set p̂e is small enough con-
taining only a few entities. Specifically, we set the mini-
mal points γ as 100 and the ratio that controls the maxi-
mum number of points δ as 0.3. As for the caption loss, we
set α1, α2 and α3 as 0, 0.05 and 0.05 for scene-level Ls

cap,
view-level Lv

cap and entity-level loss Le
cap for ScanNet, re-

spectively. For S3DIS, we set α1, α2, and α3 as 0, 0.08,
and 0.02 separately.

S1.5. Usage of Images

For ScanNet, we use a 25,000-frame subset* from Scan-
Net images for captioning. For S3DIS, as each scene con-
tains a widely varying number of images, we subsample its
images to caption at most 50 images per scene. It is worth
noting that some S3DIS scenes lack corresponding images;
we consequently cannot provide language supervision for
those scenes without images during training.

*https://kaldir.vc.in.tum.de/scannet_benchmark/
documentation

https://kaldir.vc.in.tum.de/scannet_benchmark/documentation
https://kaldir.vc.in.tum.de/scannet_benchmark/documentation


Partition Base Categories Novel Categories
B8/N4 ceiling, floor, wall, beam, column, door, chair, board window, table, sofa, bookcase
B6/N6 ceiling, wall, beam, column, chair, bookcase floor, window, door, table, sofa, board

Table S3. Category partitions for open-vocabulary semantic and instance segmentation on S3DIS.
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Figure S1. Comparison between close-set scene understanding framework and open-vocabulary scene understanding framework.

Components
mAP50per-class seg head

and score head
cls head class statistics

✓ ✓ ✓ 61.8
✓ ✓ 62.0

✓ 61.1
60.7

Table S4. Fully-supervised instance segmentation results of differ-
ent SoftGroup variants upon ScanNet in terms of mAP50.

S2. Analysis of PointCLIP for Scene Under-
standing

In recent years, 2D open-vocabulary understanding [7,
14, 16, 9] achieves unprecedented success driven by trans-
ferable vision-language models such as CLIP [13] trained
on large-scale image-caption pairs. Inspired by that suc-
cess, PointCLIP [8] has made the first attempt to trans-
fer the knowledge of CLIP into the 3D domain for zero-
shot and few-shot object classification tasks. PointCLIP
projects 3D point clouds into 2D multi-view depth maps and
leverages CLIP to process multi-view depth images to ob-
tain predictions. Finally, the predictions are assembled into
3D predictions. Though some progress has been made in
object-level understanding, our experimental results show
that PointCLIP is not suitable for scene-level understand-
ing tasks with poor performance and heavy inference over-
heads.
Task-specific modifications. To extend PointCLIP for 3D
scene understanding, we make the following modifications.
First, we follow the state-of-the-art 2D open-vocabulary se-
mantic segmentation method MaskCLIP [17] to modify the

attentive pooling layer of CLIP’s vision encoder for obtain-
ing pixel-wise dense predictions. Second, instead of us-
ing self-rendered images, we utilize collected depth images
captured by depth sensors since they are realistic with more
accurate depth values. We also explore utilizing collected
RGB images to avoid modal gaps caused by using depth
images. Finally, to assemble multi-view 2D results into 3D,
other than voting to get object-wise predictions, we back-
project all multi-view image predictions into 3D space via
3D geometry and assign predictions to each point of 3D
scenes by searching nearest neighbors in back-projected 3D
point clouds.
Results. As shown in Table S5, with depth images as input,

Input 2D mIoU 3D mIoU latency (ms)
depth images 02.2 01.7 1667
RGB images 17.8 17.2 1667

Table S5. Results of zero-shot 3D semantic segmentation using
PointCLIP on ScanNet.

the modified PointCLIP obtains only 2.2% mIoU on 2D se-
mantic segmentation with 5,436 validation samples of Scan-
Net. The assembled 3D prediction only attains 1.7% mIoU
on 312 samples, which is very close to random guesses.
When alternated to use RGB images as input, the perfor-
mance lifts to 17.8% mIoU on 2D and 17.2% mIoU on
3D, demonstrating that using RGB images can avoid an-
noying modal gaps. However, the performance is still mod-
erate, which suggests this projection-based stream of work
is sub-optimal for tackling 3D scene understanding tasks.
Though further fine-tuning on seen categories might benefit
model performance, this line of research has a key limita-
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Figure S2. Comparison between close-set instance head and open-vocabulary instance head.

tion: by projecting 3D data to 2D, it suffers from informa-
tion loss and makes the model unable to directly learn from
information-rich 3D data.

In addition, to assess the model efficiency, we use latency
to measure the execution speed of model inference on a sin-
gle GeForce RTX 2080Ti. As shown in Table S5, Point-
CLIP takes an average of 1667ms to process images of one
3D scene, which is rather costly, not to mention the post-
processing time for back-projection and results ensemble.
Instead, our 3D network only costs 83ms to process one 3D
sample, which is 20 times more efficient than PointCLIP.

In sum, the poor zero-shot performance, information loss
from projection, and heavy computation costs render this
line of work not suitable for 3D scene understanding and
prevent us from exploring further on this stream of work.

S3. Additional Experimental Results

S3.1. Re-partition Experiments

Splits
hIoU / mIoUB / mIoUN

LSeg-3D [9] Ours
random-sample 1 00.0 / 61.7 / 00.0 65.3 / 68.3 / 62.4
random-sample 2 00.0 / 48.5 / 00.0 53.1 / 70.1 / 42.7
random-sample 3 00.3 / 66.1 / 00.2 60.9 / 69.2 / 54.5
frequency-sample 00.0 / 68.7 / 00.0 62.6 / 69.0 / 57.3

Table S6. Results of re-sampled base and novel categories.

To ensure the reliability of results, we randomly re-
sample base and novel categories three times and sample
it based on class frequency for the B15/N4 ScanNet seman-
tic segmentation task. As shown in Table S6, our method
consistently exceeds LSeg-3D baseline among four differ-
ent splits by a large margin of 53.1% ∼ 65.3% hIoU, which
reveals the robustness of our methods in handling different
novel classes.

S3.2. Per-class Results

We present per-category performances of our open-
vocabulary 3D scene understanding framework on seman-
tic and instance segmentation. As shown in Table S7
and Table S8, novel classes generally perform worse than
base classes without annotation supervision. With the
space of novel categories enlarged (e.g. from B15/N4 to
B12/N7 partition), the performance on novel classes de-
grades (e.g. ‘bookshelf’ obtains 7.4% mIoU drop from
B15/N4 to B12/N7 partition on semantic segmentation) due
to the insufficient seen-category data to tune the model.

S3.3. Error Bar

Here, to show the robustness of our experimental results,
we repeat the experiments on open-vocabulary semantic and
instance segmentation three times and report their average
along with standard deviation. As shown in Table S9 and
Table S10, the results on base classes are slightly more sta-
ble than novel classes with lower standard deviations, which
demonstrates the higher confidence uncertainty of novel
class predictions. Besides, results on ScanNet are more sta-
ble than S3DIS, which indicates that the sample size and
diversity contribute a lot to the performance stability.

S3.4. Equipping Fully-Supervised Model with
Point-Caption Supervision.

As demonstrated in Table S11, fully-supervised models
equipped with caption supervision loss perform similarly to
those without it, as they already have access to annotations
for all categories. In this scenario, our language supervision
neither hinders nor enhances fully-supervised performance,
validating our fairness in using the fully-supervised model
for comparison in the main paper.

S3.5. Combination of Caption Supervisions.

The combination of three captions, including the scene-
level caption, can result in a 0.6% increase in hIoU, as
shown in Table S12. However, finding such a right balance
between these captions requires sophisticated loss trade-off
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B15/N4 84.6 95.0 64.9 81.1 87.9 75.9 72.2 61.9 62.1 69.5 30.9 60.1 46.5 70.7 50.5 66.1 56.8 59.0 81.7
B12/N7 84.7 95.1 65.3 57.8 44.2 75.9 34.5 62.5 62.3 62.1 20.5 57.8 61.4 72.4 47.9 64.9 85.9 28.4 69.6
B10/N9 83.8 95.2 64.3 80.9 88.0 78.5 73.2 60.6 61.5 68.6 17.7 23.4 51.3 70.6 25.7 38.2 51.3 27.3 61.7
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B13/N4 − − 50.5 77.0 82.9 43.4 75.4 49.0 46.0 43.7 46.5 33.7 23.2 54.1 49.6 56.0 97.8 47.5 85.8
B10/N7 − − 53.7 62.7 11.2 70.5 27.2 47.7 45.7 30.0 01.5 39.9 40.8 50.6 68.6 84.6 92.9 24.6 00.0
B8/N9 − − 45.1 77.4 82.2 84.2 74.2 48.9 51.0 30.0 00.5 02.1 16.8 44.9 28.3 35.1 94.3 16.6 00.0

Table S7. Per-class results of 3D open-vocabulary scene understanding on ScanNet. Performance on novel class are marked in blue .
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B6/N6 89.5 60.2 17.9 00.0 41.5 10.2 02.1 00.6 86.2 45.1 00.1 02.2

Table S8. Per-class results of 3D open-vocabulary scene understanding on S3DIS.

techniques that are not universally applicable across differ-
ent datasets. Therefore, the scene-level caption is not used
in our paper for the sake of generalization. Further studies
on effectively combining caption supervisions would be a
future investigation.

S4. Caption Examples

In this section, we present examples of image-caption
pairs obtained by vision-language (VL) foundation models
and examples of hierarchical associated point-caption pairs.
As illustrated in Fig. S3, image captions describe main enti-
ties of images along with room types (e.g. kitchen), texture
(e.g. leather), color (e.g. green) or spatial relationships (e.g.
on top of), conveying rich semantic clues with large vocab-
ulary size. Moreover, uncommon classes such as ‘buddha
statue’ are also correctly detected, reflecting the generaliz-
ability of existing VL foundation models and semantic com-
prehensiveness of generated captions.

With obtained image-caption pairs, we are capable to
associate 3D points and captions hierarchically leveraging
geometric constraints between 3D point clouds and multi-
view images. As shown in Fig. S4 (a), the scene-level cap-
tion describes each area/room (e.g. kitchen, living room)
in the whole scene with abundant vocabulary, providing
semantic-rich language supervision. View-level caption in
Fig. S4 (b) focuses on single view frustums of the 3D point
cloud, capturing more local details with elaborate text de-
scriptions, which enables the model to learn region-wise
vision-semantic relationships. Additionally, as shown in

Fig. S4 (c), the entity-level caption covers only a few en-
tities in small 3D point sets with concrete words, providing
more fine-grained supervisions to learn object-level under-
standing and localization.

S5. Qualitative Results
Here, we provide some qualitative results on open-

vocabulary semantic segmentation and instance segmen-
tation as illustrated in Fig. S5. Compared to the LSeg-
3D baseline that always confuses unseen classes as seen
classes, our framework successfully recognizes novel cat-
egories with accurate semantic masks, which shows our
point-caption association injects rich semantic concepts into
the 3D network. Additionally, the instance prediction masks
of our framework are also accurate, while the LSeg-3D
baseline misses novel objects or predicts incomplete object
masks. It reflects the strong generalized localization ability
of our framework.

S6. Limitation and Open Problems
Although our language-driven open-vocabulary 3D

scene understanding framework introduces rich semantic
concepts for learning adequate visual-semantic relation-
ships, it still suffers from limitations in the following as-
pects. First comes the calibration problem that the model
tends to produce over-confident predictions on base classes,
which lies in both semantic and instance segmentation
tasks. For semantic segmentation, though the binary head
is developed to calibrate semantic scores for in-domain



Round
ScanNet S3DIS

B15/N4 B12/N7 B10/N9 B8/N4 B6/N6
hIoU mIoUB mIoUN hIoU mIoUB mIoUN hIoU mIoUB mIoUN hIoU mIoUB mIoUN hIoU mIoUB mIoUN

1 66.3 68.4 64.2 54.3 69.5 44.6 52.8 76.2 40.6 33.2 58.2 23.3 39.4 57.2 30.0
2 65.2 68.6 62.2 54.8 69.7 45.2 53.3 75.6 40.9 37.0 59.5 26.9 39.5 55.1 30.8
3 64.5 67.8 60.8 59.7 69.2 48.0 53.2 76.6 40.8 33.7 59.4 23.5 36.5 54.3 27.5

Average 65.3 68.3 62.4 55.3 69.5 45.9 53.1 76.2 40.8 34.6 59.0 24.5 38.5 55.5 29.4
Std 00.9 00.4 01.7 01.3 00.2 01.8 00.3 00.5 00.2 02.1 00.7 02.0 01.7 01.5 01.7

Table S9. Repeat results for open-vocabulary 3D semantic segmentation on ScanNet and S3DIS in terms of hIoU, mIoUB and mIoUN .

Round
ScanNet S3DIS

B13/N4 B10/N7 B8/N9 B8/N4 B6/N6
hAP50 mAPB

50 mAPN
50 hAP50 mAPB

50 mAPN
50 hAP50 mAPB

50 mAPN
50 hAP50 mAPB

50 mAPN
50 hAP50 mAPB

50 mAPN
50

1 54.9 58.1 52.0 33.1 52.5 24.1 34.5 62.1 23.9 19.3 59.2 11.5 10.9 49.2 06.1
2 56.7 57.9 55.5 28.4 55.1 19.1 37.5 63.8 26.5 9.2 57.4 05.0 19.8 46.7 12.6
3 55.0 59.5 51.1 32.1 56.3 22.5 35.7 63.5 24.8 16.8 60.0 09.7 17.4 44.9 10.8

Average 55.5 58.5 52.9 31.2 54.6 21.9 35.9 63.1 25.1 15.0 59.0 08.6 16.0 46.9 09.8
Std 01.0 00.9 02.3 02.5 01.9 02.6 01.5 00.9 01.3 04.3 01.1 02.7 04.6 02.2 03.4

Table S10. Repeat results for open-vocabulary 3D instance segmentation on ScanNet and S3DIS in terms of hAP50, mAPB
50 and mAPN

50.

Method mIoU
mIoUB / mIoUN

B15/N4 B12/N7 B10/N9
Fully-Sup. 70.62 68.4 / 79.1 70.0 / 71.8 75.8 / 64.9

Fully-Sup. + Caption 70.82 68.7 / 78.9 70.3 / 71.7 76.7 / 64.6

Table S11. Fully-supervised results equipped with point-caption
supervision.

α1(scene) α2(view) α3(entity) hIoU / mIoUB / mIoUN

0.000 0.050 0.050 65.3 / 68.3 / 62.4
0.033 0.033 0.033 64.6 / 69.0 / 60.8
0.010 0.045 0.045 65.9 / 68.2 / 63.8

Table S12. Ablation for caption loss weights on ScanNet B15/N4.

open-vocabulary scene understanding, it fails to rectify pre-
dictions for out-of-domain transfer tasks. Trained on the
dataset-specific base/novel partition, the binary head is hard
to generalize to other datasets with data distribution shifts,
which encourages us to design more transferable score cal-
ibration modules in the future. As for the instance segmen-
tation task, though we largely address the localization prob-
lem for novel classes through fine-grained point-caption
pairs, the calibration problem also exists in the proposal
grouping process, where objects of novel classes cannot
group well and probably obtain incomplete instance masks.
We also leave it as a challenge that needs to be resolved
further.

The second problem is that S3DIS achieves slightly
worse open-vocabulary performance than ScanNet, largely
due to its limited sample size and diversity, as well as much
fewer point-caption associations. Inspired by our zero-shot

transfer results, we believe it is an appealing alternative to
pre-train on a large dataset with rich semantic information
and then fine-tune it on the small-scale dataset, which we
leave for future study.
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Figure S3. Examples of image-caption pairs by image-captioning model ViT-GPT2 [1].
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(b) view-level caption

(c) entity-level caption

a	kitchen	with	a	refrigerator	
and	a	trash	can

a	bedroom	with	a	bed	
and	pictures	on	the	wall

a	dresser	with	drawers	and	a	
tv	on	top	of	it

a	toaster	oven	sitting	on	top	
of	a	kitchen	counter

(a) scene-level caption

Video	shows	a	person	sitting	on	a	couch	with	their	feet	
on	a	rug.	A	guitar	is	sitting	in	a	room	next	to	a	bed.	A	
toaster	oven	is	sitting	on	top	of	a	kitchen	counter.	A	bike	
is	parked	in	a	living	room	with	a	tiled	floor.

A	living	room	is	clean	and	ready	for	the	flooring	to	be	installed.	A	
bed	with	a	gold	blanket	and	a	laptop	on	top	of	it.	A	bag	of	clothes	
sitting	on	a	chair	in	a	living	room.	A	treadmill	in	the	corner	of	a	
room.	an	exercise	bike	in	a	room	with	a	white	curtain.

chair couchtable couch living hotel lamp bed tv

Figure S4. Examples of hierarchical point-caption pairs from ScanNet [5]
.

puter Vision (ECCV), 2022.



Ours Ground-truthLseg-3DInput

Figure S5. Qualitative results of open-vocabulary semantic segmentation and instance segmentation. In each example, the first row
illustrates the semantic masks and the second row shows the instance masks. Novel classes are highlighted in red bounding boxes.
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