
Table 6. Classification error rate (%) of various methods when the
domain difficulty with respect to the initial source error at sever-
ity level 5 either increases from low-to-high (easy-to-hard) or de-
creases from high-to-low (hard-to-easy).
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BN–1 ✓ - 20.4 35.4 68.6
TENT ✓ high → low 19.6 66.9 62.8
TENT ✓ low → high 20.2 52.1 60.2
AdaContrast ✓ high → low 18.8 33.7 66.3
AdaContrast ✓ low → high 17.9 32.6 60.2
GTTA-MIX ✗ high → low 17.6 30.5 60.2
GTTA-MIX ✗ low → high 17.4 30.1 58.8
MT + LCE ✓ high → low 19.2 32.4 66.4
MT + LCE ✓ low → high 17.1 30.5 61.2
MT + LSCE ✓ high → low 18.9 31.9 63.5
MT + LSCE ✓ low → high 16.7 29.4 51.5
RMT (ours) ✗ high → low 14.2 27.7 57.5
RMT (ours) ✗ low → high 12.9 26.3 50.3

A. Adaptation with increasing difficulty
Since mean teacher based approaches have shown

tremendous performance improvements in the gradual set-
ting compared to the continual setting, we now consider
the case, where the domain difficulty changes from easy-
to-hard and hard-to-easy. Specifically, we sort the order of
the corruptions with respect to the error at severity level 5 of
the initial source model from low-to-high and high-to-low.
While Tab. 6 shows the results, Tab. 7 illustrates the specific
corruption orders for an increasing source error. Clearly,
all methods improve when the domain difficulty increases
compared to the other way round. Notably, mean teachers
using a symmetric cross-entropy loss (MT + LSCE) demon-
strate the highest error reductions with up to 12% on the
ImageNet-C sequence. In contrast, a mean teacher with a
cross-entropy loss (MT + LCE) only decreases the error by
5.2%, achieving an error rate of 61.2%. This is absolutely
9.7% worse compared to the error rate of a mean teacher
using a symmetric cross-entropy loss.

B. Ablation studies
For the following ablation studies, we investigate our

non-source-free variant with 1 update step.

More updates decrease the error for non-source-free
methods Since for some applications computational ef-
ficiency may be more important than a high accuracy and
vice versa, we now investigate the effect of different num-
bers of update steps. As shown by Tab. 9 (a), all datasets
profit when more update steps are applied, with 2 and 4
steps providing a good balance between performance and
computational complexity. However, the best results are
achieved with 6 updates. Note that the performance of
source-free approaches like CoTTA deteriorates for multi-
ple update steps due to over-adaptation.

1% of the source data improves the performance In
Tab. 9 (b), we illustrate the error rate for different amounts
of randomly sampled source data. This is especially rel-
evant for applications with either a limited memory or
when source data cannot be stored on the device due to
privacy issues (0%). While the error increases slightly
on CIFAR100C and DomainNet-126, the other datasets
are only marginally affected by the amount of available
source data. Although even our source-free variant already
achieves state-of-the-art performance on all benchmarks,
storing only 1% of the source data is enough to further boost
the performance.

Sensitivity To investigate the sensitivity of our proposed
method with respect to the momentum value α of the mean
teacher, as well as the temperature term τ , we conduct two
ablation studies. As illustrated in Tab. 9 (c), which shows
different values for the temperature term, RMT performs
not only stable for all the common default values in con-
trastive learning (0.07, 0.1 and 0.2), but also for much larger
values like 1.0. As shown by Tab. 9 (c), updating the mean
teacher too slow or too fast can slightly degrade the results
on average. Nevertheless, for the most common range of
momentum values, the performance is stable.

In Tab. 8, we analyze the influence of source replay and
the contrastive loss by considering different values for λCE

and λCL, respectively. For values close to the ones used
by our approach λ ∈ [0.5, 1.0], we observe a stable perfor-
mance. As expected, for small values λ ≤ 0.1, we observe
a drop in performance, underlining that source replay and
contrastive learning is indeed beneficial.

Table 8. Classification error rate (%) when using different loss
weights. The results are averaged over 3 runs and all datasets.

λ 0.0 0.1 0.5 1.0
λCE (source replay) 38.7 38.1 37.6 37.8
λCL (contrastive learning) 38.6 38.4 38.0 37.8



Table 7. The corruption types are ordered with respect to the error at severity level 5 of the initial source model from low-to-high.
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Table 9. Classification error rate (%) for different: (a) numbers of update steps; (b) amounts of available source samples during test-time;
(c) temperatures τ for the contrastive loss; (d) momentum values α used to update the mean teacher.

(a) (b)
Updates 1 2 4 6 8
CIFAR10C 13.9 13.2 12.5 12.0 11.8
CIFAR100C 27.6 26.9 26.8 26.8 27.0
ImageNet-C 57.9 56.9 56.4 56.1 56.4
ImageNet-R 55.5 54.6 53.5 53.1 53.1
DomainNet-126 33.9 33.1 32.8 32.7 32.7

100% 50% 25% 10% 5% 1% 0%
CIFAR10C 13.9 13.9 14.0 14.1 14.3 14.3 14.5
CIFAR100C 27.6 27.8 27.8 28.2 28.3 28.9 29.0
ImageNet-C 57.9 57.8 57.9 57.8 58.0 58.4 59.8
ImageNet-R 55.5 55.4 55.2 55.4 55.7 55.6 55.7
DomainNet-126 33.9 34.2 34.3 34.4 34.6 34.6 34.7

(c) (d)
temperature τ 0.01 0.07 0.1 0.2 1.0
CIFAR10C 13.9 13.9 13.9 13.9 14.3
CIFAR100C 27.5 27.5 27.6 27.7 28.1
ImageNet-C 57.7 57.8 57.9 57.7 58.1
ImageNet-R 55.6 55.3 55.5 55.5 55.8
DomainNet-126 91.8 34.1 33.9 34.4 35.6

momentum α 0.99 0.995 0.999 0.9995 0.9999
CIFAR10C 13.8 13.8 13.9 14.3 15.5
CIFAR100C 28.6 27.7 27.6 28.2 29.2
ImageNet-C 64.1 60.9 57.9 58.3 60.9
ImageNet-R 60.1 58.9 55.5 56.1 57.2
DomainNet-126 34.6 33.9 33.9 34.5 35.0

C. DomainNet-126

While a variety of corruption benchmarks for test-time
adaptation exist, benchmarks that investigate natural shifts
are limited. A common dataset which contains natural shifts
is ImageNet-R. However, it has the drawback that the in-
cluded shifts are not separated. The continual DomainNet-
126 benchmark closes this gap, consisting of four domains
(real, clipart, painting, sketch) and 126 classes. It enables
the investigation of continual TTA for natural shifts and fur-
ther provides source models for all covered domains. Addi-
tionally, DomainNet-126 also includes shifts in label priors
(imbalanced data), which corresponds to a more realistic
setting than the uniform class distributions prevailing in ex-
isting benchmarks.

The exact four sequences used in the continual
DomainNet-126 benchmark are shown in Tab. 10. While
the left column indicates the name of the sequence and the

domain on which the model was pre-trained, the order of
the test domains is shown on the right.

Detailed results for the continual DomainNet-126 bench-
mark are shown in Tab. 11.

Table 10. Details on the test sequences used for the continual
DomainNet-126 benchmark.

Source domain Test sequence
real clipart → painting → sketch
clipart sketch → real → painting
painting real → sketch → clipart
sketch painting → clipart → real



Table 11. Classification error rate (%) for DomainNet-126 in the online continual test-time adaptation setting, where the test domains are
sequentially displayed from left to right. We report the performance of our method averaged over 5 runs.

Source domain real clipart painting sketch
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clipart painting sketch sketch real painting real sketch clipart painting clipart real Mean

Source ✓ - 44.9 37.4 53.6 52.5 40.1 55.3 24.7 53.8 46.7 49.2 44.8 40.4 45.3
BN–1 ✓ - 46.0 37.2 52.1 50.7 35.1 49.7 25.1 47.7 45.8 40.9 40.6 32.0 41.9
TENT cont. ✓ 1 44.6 35.0 47.5 49.3 34.9 48.3 24.2 44.5 43.0 40.1 39.5 33.0 40.3
CoTTA ✓ 1 45.3 35.8 49.2 50.1 33.4 45.6 23.4 43.9 41.8 40.0 39.2 29.6 39.8
AdaContrast ✓ 1 39.3 32.7 41.4 45.5 27.5 39.7 20.5 39.2 37.2 35.9 34.7 25.1 34.9
GTTA-MIX ✗ 4 40.4 32.7 42.8 46.4 34.2 46.7 23.3 40.2 37.3 36.9 36.0 29.8 37.7
RMT (ours) ✓ 1 37.7 31.7 41.5 43.8 29.8 40.1 20.9 38.4 35.8 35.3 33.4 27.5 34.7
RMT (ours) ✗ 1 37.9 31.4 41.1 43.5 29.1 38.6 21.1 37.1 33.8 35.1 31.7 26.4 33.9
RMT (ours) ✗ 4 36.9 30.0 38.4 41.7 29.6 38.0 19.9 36.9 32.9 33.2 29.7 26.8 32.8
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Figure 3. Loss (top) and gradient (bottom) surface illustrated for the binary case of the cross-entropy loss LCE and the symmetric cross-
entropy LSCE in dependence of the confidences p and q of the student and teacher, respectively.


