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1. Implementation details

Sphere resampling. We employ sphere resampling to en-
sure all the primitives model the area of interest. To identify
the spheres that fail to reach the surface due to local mini-
mum regions of the implicit geometry field, we uniformly
sample K = 1000 points in each sphere and evaluate the
implicit function. Then, we mark the spheres that contain
points either with all values lower, or all values higher than
the surface level. Each marked sphere is replaced as fol-
lows: we randomly pick a sphere that is not marked and
center a Gaussian distribution with a standard deviation of
σ = 2 ∗ rmin around its origin, we sample the new origin
of the sphere from this distribution; finally, we reinitialize
the optimizer state for the considered primitive. A similar
resampling strategy is applied periodically after every 5000
iterations for the spheres that are pushed by the repulsion
outside of the scene bounds.

We found the resampling of empty spheres to bring the
most benefits to UNISURF [5] model which uses an occu-
pancy field for the implicit surface. This representation is
more susceptible to local minimums than the SDF which
has an additional Eikonal regularization [2]. Also, the num-
ber of spheres that require resampling for NeuralWarp [1] /
VolSDF [7] is around 10 times higher in the initial steps than
for NeuS [6]. We believe this is because the former imposes
the Eikonal penalty only on two points on each ray, while
the latter constrains the gradients of all points sampled.

Sphere-guided ray sampling. Compared to base meth-
ods, the sphere-guided models have the relevant areas of
the volume explicitly defined. We can exploit the sphere
bounds into sampling more informative rays during training
as follows: we randomly sample a point inside each sphere
and project the points to the training views. We exclude the
points that project outside of the image bounds and randomly
sample from the remaining points a batch of corresponding
camera rays which are used for a training step.

Sphere-guided ray marching. The proposed approach
can be applied to the considered 3D reconstruction meth-
ods without altering their formulation and training process.
However, the introduced sphere-guided volume rendering
enhances the point sampling along the ray procedures of the
base methods as described in Algorithm 1, which imposes
the following modifications:

• UNISURF [5] - the root-finding procedure is adjusted
by only searching for the surface within the volume
covered by the spheres. More precisely, we sample
points uniformly inside the intervals (as found at step
5 of the algorithm) to find the first sign change. We
then apply the secant method on this segment as in the
original method. Reducing the search to the area around
the surface enables the algorithm to better estimate
the ray-surface intersection. The rest of the sampling
procedure follows the original model.

• NeuS [6] - the points sampled within the ray-sphere
intersections are used to compute a coarse probability
estimation along the ray. If the ray intersects multiple
surfaces, the set computed at step 5 of the algorithm can
have more than one interval. As the region between two
such intervals is outside the sphere cloud, we do not
want to include it in the importance sampling. There-
fore, we set the probabilities of these regions to zero,
ensuring that the added points through importance sam-
pling will belong to the set of intervals. Similarly, we
set the weights of the midpoints used in color computa-
tion that fall outside the sphere bounds to zero. In the
experiments that do not have segmentation masks as in-
put, NeuS samples a set of points outside the bounds of
the scene for background modeling; we do not interfere
with these samples.

• VolSDF [7] / NeuralWarp [1] - We perform similar
modifications as for the NeuS model. We set the uncer-
tainty estimation of the ray segments between intervals
to zero, so that the points added during the upsampling
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stage are contained within the intersections of the ray
with the sphere cloud. Additionally, we consider the es-
timated opacity of the previously mentioned segments
as zero before performing inverse transform sampling
to ensure that the final set of points lies within the in-
tervals computed at step 5 of the algorithm. We do not
interfere with the points sampled in the base method
for background modeling outside the scene bounds.

2. Additional results

Further ablation study. We perform additional experi-
ments to highlight the benefits of the proposed sphere-guided
training. We compare the baseline NeuS model and our im-
proved model in three different setups by varying the number
of points sampled per ray: 128 points (default setting), 64
points (32 linearly spaced + 32 importance sampled), and 32
points (16 linearly spaced + 16 importance sampled). The
results indicate that our approach can better handle the di-
minished number of input points, as can be seen in Figure 2.

We further evaluate independently the effect of the pro-
posed ray-sampling and ray-marching procedures based on
the optimized sphere cloud. We consider both the base set-
ting with 128 points per ray and also using 64 points per ray.
We show in Table 2 that both components contribute to our
final results. Sphere-based ray sampling has a larger and
more consistent effect by itself in the default setting, whereas
the ray-marching procedure becomes more important when
the number of samples is low. This is because it is harder
to approximate the integral with fewer points per ray, and
an improved sampling strategy has more obvious benefits.
The effect is especially visible in scenes with thin structures,
such as Ficus (Figure 2) and Ship. We note that the results
on Drums are not always representative because the scene
contains semi-transparent surfaces, which are, by design, not
handled well by the base methods.

We also include a visual comparison between our com-
plete model and three ablations in Figure 3. For this compar-
ison, we use NeuS as the base system and train all versions
without mask supervision.

DTU dataset experiments. We show additional quantita-
tive (Figure 1) and qualitative (Figures 5-8) evaluation of
our method on the DTU [3] dataset. In Figure 1, we inves-
tigate more in-depth the comparative performance between
our method and NeuralWarp. To this end, we randomly
picked five scenes and trained four models with different
random seeds. We add these data points to the ones reported
in the main paper and present them in this figure. We con-
clude that, on average, our method performs better than raw
NeuralWarp, when the stochasticity of the base method is
accounted for. Our method on average achieves a mean
Chamfer distance of 0.73 against the NeuralWarp’s 0.76.

Figure 1. Quantitative results for the subset of five scenes of the
DTU [3] dataset. We separately train each method for each scene
five times with different starting random seeds. The results for our
approach are reported in green, while for the base method they
are in purple. The x-axis represents the scene ID, and the y-axis
shows the obtained Chamfer distances. This comparison utilizes a
masked Chamfer distance, following the same setting as in Table 1
in the experiments section. Our approach achieves a noticeably
reduced variance of the results compared to the base system, and
outperforms it on average, obtaining mean Chamfer distance of
0.73, averaged across five seeds and five scans, against the Neural-
Warp’s 0.76. We also have better worst- and best-case performance,
with our method having mean best-case metrics of 0.69 against
NeuralWarp’s 0.71 and mean worst-case of 0.79 against 0.86.

We also show additional qualitative results for eight more
scenes of DTU dataset in Figures 5-8.

Realistic Synthetic 360 dataset [4] experiments. This
dataset has more complex geometries (with multiple objects
per scene and fine details) compared with the DTU dataset,
making it more challenging for the networks to accurately
reconstruct them. We found that the default Eikonal regu-
larization weight of 0.1 discourages the NeuS-based models
without mask supervision from reconstructing disconnected
objects (such as the chair in the drums scene). Therefore, the
weight was divided by 10 for all experiments on this dataset,
including the results in the main paper and the ablations.
Before evaluating the Chamfer distance of the reconstructed
meshes we filter the geometries using the ground truth seg-
mentation masks dilated with a radius of 12 as in the DTU
evaluation.

Next, we include qualitative results for additional scenes
of the Realistic Synthetic 360 dataset [4] in Figures 9-11,
as well as renders in Figures 12-13. We observe that our
method not only achieves superior quality of reconstruction
but also renders, which is confirmed by the image metrics
presented in Table 1. We report the PSNR, SSIM, and LPIPS
[8] metrics evaluated on the 200 test views provided in the
dataset (not seen during training).

Additionally, in Figure 4 we present the learning curves
for both our and the NeuS base model when trained for more
iterations on one of the scenes. This experiment confirms



PSNR ↑
Method Chair Drums Ficus Hotdog Lego Mats Mic Ship Mean
NeRF [4] 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.01
NeuS [6] 30.89 20.89 27.44 36.04 30.45 30.21 31.13 27.08 29.26
NeuS (ours) 32.21 21.81 30.40 36.76 31.80 31.08 31.44 28.63 30.52
NeuralWarp [1] 29.29 18.41 24.50 32.32 27.90 27.45 29.15 24.07 26.64
NeuralWarp (ours) 30.17 18.82 26.79 32.73 28.81 24.76 28.67 25.22 27.00

SSIM ↑
Method Chair Drums Ficus Hotdog Lego Mats Mic Ship Mean
NeRF [4] 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856 0.947
NeuS [6] 0.948 0.897 0.957 0.973 0.952 0.960 0.971 0.864 0.940
NeuS (ours) 0.960 0.909 0.973 0.978 0.962 0.965 0.974 0.883 0.951
NeuralWarp [1] 0.936 0.872 0.933 0.960 0.928 0.938 0.962 0.817 0.918
NeuralWarp (ours) 0.947 0.878 0.950 0.964 0.939 0.941 0.960 0.828 0.926

LPIPS ↓
Method Chair Drums Ficus Hotdog Lego Mats Mic Ship Mean
NeRF [4] 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206 0.081
NeuS [6] 0.064 0.118 0.047 0.045 0.060 0.053 0.030 0.184 0.075
NeuS (ours) 0.050 0.103 0.029 0.037 0.047 0.048 0.026 0.165 0.063
NeuralWarp [1] 0.076 0.161 0.072 0.068 0.091 0.074 0.043 0.243 0.104
NeuralWarp (ours) 0.065 0.142 0.053 0.061 0.076 0.076 0.047 0.228 0.094

Table 1. Quantitative image results on the Realistic Synthetic 360 dataset [4]. We evaluate PSNR, SSIM (higher is better), and LPIPS [8]
(lower is better). The proposed approach improves the rendering quality of the NeuS and NeuralWarp models.

Scene name
Method Chair Drums Ficus Hotdog Lego Mats Mic Ship
NeuS 0.38 1.88 0.51 0.52 0.68 0.40 0.60 0.60
w/o S-guided ray sampling 0.36 1.79 0.49 0.55 0.69 0.43 0.72 0.79
w/o S-guided ray marching 0.38 0.81 0.40 0.54 0.61 0.29 0.69 0.67
NeuS (ours) 0.39 1.20 0.40 0.57 0.61 0.31 0.67 0.54
NeuS 64 0.35 2.28 0.61 0.52 0.73 0.35 0.57 0.84
w/o S-guided ray marching 64 0.38 1.64 0.52 0.55 0.65 0.28 0.58 0.75
NeuS (ours) 64 0.40 0.79 0.45 0.59 0.60 0.28 0.56 0.69

Table 2. Ablation study on the importance of sphere-based ray sampling and marching. We evaluate the base setting with 128 points per ray
and also using 64 points per ray (as fewer points emphasize the effect of improved ray-marching).

that our approach indeed achieves a better local optima, and
not just increases the convergence speed.

Ellipse-guided training. We additionally attempted to fur-
ther increase the sampling efficiency by using a cloud of
ellipses instead of spheres to encapsulate the learned surface.
We set the ellipses to have their two major axes equal to the
scheduled radius and be aligned with the tangent plane, while
the remaining minor axis to be aligned with the surface nor-
mal. This would allow us to increase the number of samples
along the ray with nonzero opacity even further, compared
to the sphere-based sampling. However, after running the
preliminary experiments with different scaling factors which

define the length of the minor axis, we observed no further
improvements compared to the sphere-based training. We
argue it to be caused by the high efficiency of the combina-
tion of our proposed sphere-based training and importance
sampling, which is part of the base method.
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Figure 3. Ablation study. We have used the NeuS base system, trained without mask supervision, as a base model. We show both the
resulting qualitative results, as well as obtained Chamfer distances for the shown scene. As reference, the baseline NeuS model obtains a
Chamfer distance of 0.51.
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Figure 4. The learning curves for the ficus scene of the Realistic
Synthetic 360 dataset showcase that our method converges to a
better local optima than the base system, while using the same set
of hyperparameters.
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Source NeuS NeuS (ours)

Figure 5. Additional qualitative results on the DTU [3] dataset for NeuS [6] method.



Source NeuS w/ masks NeuS w/ masks (ours)

Figure 6. Additional qualitative results on the DTU [3] dataset for NeuS [6] method trained with masks supervision.



Source UNISURF UNISURF (ours)

Figure 7. Additional qualitative results on the DTU [3] dataset for UNISURF [5] method.



Source NeuralWarp NeuralWarp (ours)

Figure 8. Additional qualitative results on the DTU [3] dataset for NeuralWarp [1] method.



Ground truth NeuS NeuS (ours)

Figure 9. Additional qualitative results on the Realistic Synthetic 360 dataset [4] for NeuS [6] method.



Ground truth VolSDF VolSDF (ours)

Figure 10. Qualitative results on the Realistic Synthetic 360 dataset [4] for the unofficial implementation of VolSDF [6] method.



Ground truth NeuralWarp NeuralWarp (ours)

Figure 11. Additional qualitative results on the Realistic Synthetic 360 dataset [4] for NeuralWarp [1] method.



Ground truth NeuS NeuS (ours)

Figure 12. Rendering results on the Realistic Synthetic 360 dataset [4] for NeuS [6] method.



Ground truth NeuralWarp NeuralWarp (ours)

Figure 13. Rendering results on the Realistic Synthetic 360 dataset [4] for NeuralWarp [1] method.
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