
Adversarial Robustness via Random Projection Filters:
Supplementary Material

Minjing Dong, Chang Xu*

School of Computer Science, University of Sydney
{mdon0736@uni, c.xu@}.sydney.edu.au

1. Proof of Theorem 1
Theorem 1. Let x, y ∈ Rn×n×d be the input to the filters, which follow Gaussian distribution x, y ∼ N (β, γ2). Consider
we have N filters F1, . . . , FN ∈ Rr×r×d, in which F1, . . . , FNr

denote the random projection matrices where all the entries
are drawn from i.i.d. N (0, 1

r2 ) while FNr+1
, . . . , FN denote the trainable parameters of convolutional layer with mean of µ

and variance of 1
r2 where r denotes the kernel size. We assume that

max
i,j

∥[x]rij∥ ≤ R, max
i,j

∥[y]rij∥ ≤ R, max
i

∥Fi∥ ≤ W, (1)

and we denote K = n2max{C
2
0R

2

r2 , (r2dβµ + C0Wγ)2} and D = µ2β2n2r4d2. Then the probability that the distance
between x, y cannot be preserved after convolutional operation F can be upper bounded as

P

(∣∣∣∣∣ 1N
N∑
l=1

⟨Fl ∗ x, Fl ∗ y⟩ − ⟨x, y⟩

∣∣∣∣∣ ≥ ϵ

)
≤ δ, for δ > 0 and

Nr >


(D−ϵ)N+Klog 2Cn2

δ

D , if ϵ−
N−Nr

N D

K ≤ (ϵ−N−Nr
N D)2

K2

(D−ϵ)N+NK

√
log 2CNn2

δ

D , otherwise

(2)

where C and C0 are absolute constants.

Proof. We consider a single filter in convolution layer F ∈ Rr×r×d with mean of µ and variance of σ2 = 1
r2 and the input

x, y ∼ N (β, γ2). For simplicity. We denote k = r× r× d and Zn as the set of {0, . . . , n− 1}. We first prove the following
simple results: Let u, v ∈ Rr×r×d and Z1 = uTF,Z2 = vTF , then we have

E[FFT ] = cov(F ) + E[F ]E[F ]T = σ2I + µ2,

E[Z1 · Z2] = uTE[FFT ]v = µ2 ·
∑

u ·
∑

v + σ2⟨u, v⟩,
(3)

where I denotes identity matrix. Now we replace u and v with [x]ri,j and [y]ri,j respectively. Given the fact that ⟨x, y⟩ =
1
r2

∑
i,j∈Zn

⟨[x]ri,j , [y]ri,j⟩, the expectation of the dot product of two filter output can be written as

E[⟨F ∗ x, F ∗ y⟩] =
∑
i,j∈Zn

E[⟨F, [x]ri,j⟩ · ⟨F, [y]ri,j⟩]

=
∑
i,j∈Zn

µ2
k∑
[x]ri,j ·

k∑
[y]ri,j + σ2⟨[x]ri,j , [y]ri,j⟩

= ⟨x, y⟩+
∑
i,j∈Zn

µ2 · k2 · β2

(4)

*Corresponding author.

1



Similarly, we consider a single random projection filter F ∈ Rr×r×d with zero mean and variance of 1
r2 .

E[⟨F ∗ x, F ∗ y⟩] =
∑
i,j∈Zn

E[⟨F, [x]ri,j⟩ · ⟨F, [y]ri,j⟩] =
∑
i,j∈Zn

1

r2
⟨[x]ri,j , [y]ri,j⟩ = ⟨x, y⟩ (5)

For simplicity, we denote Xijl = ⟨Fl, [x]rij⟩ and Yijl = ⟨Fl, [y]rij⟩. Now we consider all the filters including random
projection filters F1, . . . , FNr

and convolutional filters FNr+1
, . . . , FN . The probability that the absolute difference between

the inputs and outputs is large than ϵ can be derived as

P

(∣∣∣∣∣ 1N
N∑
l=1

⟨Fl ∗ x, Fl ∗ y⟩ − ⟨x, y⟩

∣∣∣∣∣ ≥ ϵ

)

=P

(∣∣∣∣∣ 1N
( N∑
l=1

(⟨Fl ∗ x, Fl ∗ y⟩ − E[⟨Fl ∗ x, Fl ∗ y⟩]) + (

N−Nr∑
l=1

∑
i,j∈Zn

µ2
l k

2β2)

)∣∣∣∣∣ ≥ ϵ

)

≤P

(∣∣∣∣∣ 1N
N∑
l=1

(⟨Fl ∗ x, Fl ∗ y⟩ − E[⟨Fl ∗ x, Fl ∗ y⟩])

∣∣∣∣∣+
∣∣∣∣∣ 1N

N−Nr∑
l=1

∑
i,j∈Zn

µ2
l k

2β2

∣∣∣∣∣ ≥ ϵ

)

=P

(∣∣∣∣∣ 1N ∑
l∈[N ];i,j∈Zn

⟨Xijl, Yijl⟩ − E[⟨Xijl, Yijl⟩]

∣∣∣∣∣ ≥ ϵ− N −Nr

N
µ2β2n2k2

)

≤P

(
1

N

∑
i,j∈Zn

∣∣∣∣∣ ∑
l∈[N ]

⟨Xijl, Yijl⟩ − E[⟨Xijl, Yijl⟩]

∣∣∣∣∣ ≥ ϵ− N −Nr

N
µ2β2n2k2

)

≤P

(
n2

N
max
i,j∈Zn

∣∣∣∣∣ ∑
l∈[N ]

⟨Xijl, Yijl⟩ − E[⟨Xijl, Yijl⟩]

∣∣∣∣∣ ≥ ϵ− N −Nr

N
µ2β2n2k2

)

≤
∑
i,j∈Zn

P

(
n2

N

∣∣∣∣∣ ∑
l∈[N ]

⟨Xijl, Yijl⟩ − E[⟨Xijl, Yijl⟩]

∣∣∣∣∣ ≥ ϵ− N −Nr

N
µ2β2n2k2

)

(6)

For the convolutional filters, Xijl = ⟨Fl, [x]rij⟩ and Yijl = ⟨Fl, [y]rij⟩ are linear combination of i.i.d. Gaussian RVs since
x, y ∼ N (β, γ2). Thus, Xijl and Yijl are sub-Gaussian RVs with mean of βkµ and variance of γ2∥Fl∥2. The sub-gaussian
norm of ⟨Fl, [x]rij⟩ can be computed as∥∥∥⟨Fl, [x]rij⟩∥∥∥

ψ2

=
∥∥∥Xijl

∥∥∥
ψ2

=
∥∥∥βkµ+ γ2∥Fl∥2z

∥∥∥
ψ2

≤
∥∥∥βkµ∥∥∥

ψ2

+
∥∥∥γ∥Fl∥z∥∥∥

ψ2

≤ kβµ+ C0Wγ (7)

and ∥⟨Fl, [y]rij⟩∥ψ2 = ∥Yijl∥ψ2 ≤ kβµ + C0Wγ where C0 denotes an absolute constant. According to the product of sub-
Gaussians property and centering property [8], we have ∥XY ∥ψ1 ≤ ∥X∥ψ2∥Y ∥ψ2 and ∥X − E[X]∥ψ1 ≤ C∥X∥ψ1 . Thus,
we have

∥XijlYijl − E[XijlYijl]∥ψ1
≤ (kβµ+ C0Wγ)2. (8)

Similarly, for the random projection filters, we have ∥⟨Fl, [x]rij⟩∥ψ2 = ∥Xijl∥ψ2 ≤ C0R
r and ∥⟨Fl, [y]rij⟩∥ψ2 = ∥Yijl∥ψ2 ≤

C0R
r . According to the product of sub-Gaussians property and centering property, we have

∥XijlYijl − E[XijlYijl]∥ψ1
≤ C2

0ν
2R2, (9)

According to Bernstein’s inequality for sub-exponentials, let X1, . . . , XN be independent zero-mean sub-exponential RVs.
Then, for all t ≥ 0

P

(∣∣∣∣∣ 1N
N∑
i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2exp

{
−min

{ t2

K2
,
t

K

}
· c ·N

}
, (10)

where K = maxi ∥Xi∥ψ1
and c > 0 is an absolute constant.



Together with results in Eq. 8 and Eq. 9, the probability in Eq. 6 can be bounded as

∑
i,j∈Zn

P

(
n2

N

∣∣∣∣∣ ∑
l∈[N ]

⟨Xijl, Yijl⟩ − E[⟨Xijl, Yijl⟩]

∣∣∣∣∣ ≥ ϵ− N −Nr

N
µ2β2n2r4d2

)

≤ 2n2exp
{
−min

{ (ϵ− N−Nr

N µ2β2n2r4d2)2

n4max{C4
0ν

4R4, (kβµ+ C0Wγ)4}
,

ϵ− N−Nr

N µ2β2n2r4d2

n2max{C2
0ν

2R2, (kβµ+ C0Wγ)2}

}
· c ·N

} (11)

We denote K = n2max{C2
0ν

2R2, (kβµ+ C0Wγ)2} and D = µ2β2n2r4d2. If ϵ−
N−Nr

N D

K ≤ (ϵ−N−Nr
N D)2

K2 , we have

δ > 2cn2exp
{
− ϵN −D(N −Nr)

K

}
log

δ

2cn2
> − (ϵ−D)N +DNr

K

Klog
2cn2

δ
< (ϵ−D)N +DNr

Nr >
(D − ϵ)N +Klog 2cn2

δ

D

(12)

Similarly, if ϵ−
N−Nr

N D

K >
(ϵ−N−Nr

N D)2

K2 , we have

Nr >
(D − ϵ)N +NK

√
log 2cNn2

δ

D
(13)

2. Multiple Runs
We provide the results of multiple runs of proposed random projection filters as well as additive and multiplicative noise

injection with ResNet-18 on CIFAR-10. Our proposed RPF consistently achieves the best performance.

Table 1. The evaluation results of 5 runs.

Method Clean FGSM PGD20 CW MIFGSM DeepFool AutoAttack

Add [5]

81.09 59.51 57.46 80.83 57.64 73.56 62.23
81.02 59.24 57.84 80.77 57.49 73.61 62.02
81.49 59.88 57.25 80.90 57.83 73.65 62.10
80.94 59.23 57.83 81.36 57.86 73.57 62.11
81.24 59.19 57.61 80.84 57.83 73.44 62.25

Add [5] Avg 81.16 59.41 57.60 80.94 57.73 73.57 62.14

Multi

82.91 61.89 59.77 82.70 59.96 78.49 63.96
82.76 61.89 59.43 82.77 59.54 78.98 64.03
83.08 61.77 59.05 82.73 59.36 78.52 63.94
82.74 61.98 59.34 82.27 59.37 78.70 64.04
83.16 61.92 59.49 82.80 59.48 78.28 63.78

Multi Avg 82.93 61.89 59.42 82.65 59.54 78.59 63.95

RPF

83.75 62.87 60.75 83.62 60.59 78.96 64.71
83.48 63.19 60.88 83.63 60.39 79.74 64.72
83.73 62.87 60.89 83.62 61.94 79.71 64.29
83.80 61.95 62.12 83.34 61.57 79.31 65.06
83.79 62.71 61.27 83.60 60.72 79.43 64.38

RPF(Ours) Avg 83.72 62.72 61.19 83.56 61.04 79.43 64.63



Table 2. Evaluation of black-box attacks.

C-10 C-100 C-10 C-100
Attack AT RPF AT RPF Attack AT RPF AT RPF
Square 53.64 76.56 29.57 48.21 Pixle 8.21 44.84 1.16 23.39

3. Evaluation of Black-box Attacks

We evaluate RPF under black-box attacks Square [1] and Pixle [6] with ResNet-18 on CIFAR-10 and CIFAR-100. Query
number is set to 5000 in Square and the maximum patch size is 10×10 in Pixle. The advantage of RPF over AT can be found
in Table 2 where RPF achieves better robust accuracy in all the scenarios.

4. Evaluation on More Models, Norms, and Defense Techniques.

We apply RPF on different models including densenet121, squeezenet, and vgg. We also include evaluation on different
normalizations including instance norm and layer norm [2, 7]. Furthermore, we include MART+RPF in our evaluation [9].
Our proposed RPF shows consistent improvements in all the scenarios, as shown in Table 3.

Table 3. Results with ResNet-18 on CIFAR-10.

Setting Method Clean FGSM PGD MIFGSM AA

DenseNet AT 82.94 59.36 55.32 57.67 51.83
RPF 85.19 60.90 57.00 58.92 59.91

SqueezeNet AT 76.71 51.95 47.29 49.91 42.06
RPF 82.66 64.59 62.99 60.83 69.06

Vgg16 BN AT 79.30 53.87 48.40 51.62 44.17
RPF 82.41 61.92 61.09 61.40 64.41

IN AT 81.05 52.13 42.96 48.50 39.82
RPF 84.00 56.67 49.46 52.36 52.46

LN AT 78.07 52.91 45.57 50.30 41.35
RPF 82.38 57.42 50.73 53.80 54.12

Defense MART 77.35 56.04 52.22 54.65 45.55
RPF 82.11 62.65 60.40 60.97 64.46

5. Comparisons with Noise Injection Techniques

Different from [3,4] which utilize additive noises, RPF replaces partial filters with random projection to form concatenate
noise. Following the same setting in [4], we apply RPF on ResNet-20/32/44/56. RPF performs better than PNI [3] and
Learn2Perturb [4] with relatively large margins, as shown in Table 4.

Table 4. Comparison with other noise injection techniques.

Method R20 R32 R44 R56
FGSM PGD FGSM PGD FGSM PGD FGSM PGD

PNI 54.40 45.90 51.50 43.50 55.80 48.50 53.90 46.30
Learn2Perturb 58.41 51.13 59.94 54.62 61.32 54.62 61.53 54.62

RPF 63.27 60.94 62.52 60.78 63.39 62.47 62.30 60.97
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