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A. More Comparisons and Discussions

In this section, we provide more analysis and discussion
about DisWOT from different aspects.

A.l. DisWOT under different teacher models.

When the teacher model becomes larger, the fixed hand-
designed model would have huge teacher-student gaps, lim-
iting the performance gain. DisWOT aims to solve this
problem by searching the suitable student architecture for
different teacher models. According to the results in Ta-
ble 1, the accuracy of the student network ResNet20 [9] is
unable to make consistent gains as the size of the teacher
network increases. Our proposed DisWOT enables a consis-
tent increase in student network performance as the teacher
network capacity increases on search space .Sy. In addition,
DisWOTT achieves a performance gain of about 2% when
stronger distillers are adopted.

Table 1. Top-1 accuracy (%) of ResNet20 with KD [10], student
(DisWOT) with KD [10], student (DisWOT) with DisWOT+7 on
search space So under different teachers.

Teacher ResNet20 DisWOT DisWOTt
ResNet32 70.24 71.01 71.85
ResNet44 70.56 71.25 72.12
ResNet56 70.98 71.63 72.56
ResNet110 70.79 71.84 72.92

A.2. Ranking correlation metrics

We denote the ground-truth (GT) performance and ap-
proximated scores of architectures «;(i = 1,...,N) as
Bi(i = 1,..,N) and v;(i = 1,...,N), respectively, and
the ranking of the GT and estimated score (3;, y; as r;, k; €
{1, ..., N}. Three correlation criteria is adopted in this pa-
per. Pearson coefficient (r), Kendall’s Tau (7), Spearman
coefficient (p).

*Corresponding author, 1 equal contribution, PD conducted main exper-
iments, LL proposed ideas and led the project & writing.

e Pearson correlation coefficient (Linear Correlation):

r = corr(f, ’y)/\/COIT(»B» B)corr (7, 7).

» Kendall’s Tau correlation coefficient: The relative
difference of concordant pairs and discordant pairs

= ZKj sgn(B3; — B;)sgn(y; — 7])/(]\24)

* Spearman correlation coefficient: The Pearson corre-
lation coefficient between the ranking variables p =
corr(r, k) /+/corr(r, r)corr(k, k).

Pearson measures the linear relationship between two
variables, while Kendall’s Tau and Spearman measure the
monotonic relationship. They return a value between -1 and
1, with -1 indicating an inverse correlation, 1 indicating a
positive correlation, and O representing no relationship.

In search space Sy, we evaluate and verify the ranking
consistency for all the architectures in the search space. In
search space S, we randomly sampled 50 sub-networks
from the search space to calculate the ranking consistency
results due to the excessive time overhead of the full mea-
surement and repeated each experiment 10 times.

A.3. Detailed analysis about vanilla-distilling train-
ing disparity

In this paper, we notice an interesting and non-trivial ob-
servation: the discrepancy between the model’s performance
under vanilla training and under distillation training. We
present more analysis in detail here from three aspects.
Ranking correlation degrade. In Table 2, we tabulate
the ranking correlations for different zero-proxies with dis-
tilling and vanilla training on the search space Sy. The
existing zero-proxies’ distillation correlations are reduced
by 5% ~ 69% than the vanilla correlation. This common
issue shows that existing zero-shot NAS methods score sub-
optimal student architectures for a given teacher model. Dis-
WOT not only has a better correlation for distillation but also
is free of vanilla-distill ranking consistency degradation.
Correlation visualization of different scores. Figure 1
demonstrates the ranking consistency of NWOT [21] for
distillation accuracy and vanilla accuracy, and there is a



Table 2. Details experiments of the discrepancy between vanilla accuracy and distillation accuracy on search space So.

Ranking with distill accuracy ‘

Ranking with vanilla accuracy

‘ Ranking gap for distill and vanilla accuracy

Method Kendall’s Tau Spearman Pearson ‘ Kendall’s Tau  Spearman Pearson ‘ Kendall’s Tau  Spearman Pearson

FLOPs [1] 51.61 72.92 76.40 58.74 79.47 79.19 7.13 () 6.55(]) 2.79 ()

Fisher [1] 62.86 81.37 20.90 81.68 95.28 70.24 18.82 (1) 1391 () 49.34())

Grad_norm [1] 63.75 82.35 39.35 84.76 96.55 76.07 21.01 () 14.2 () 36.72 (1)

NWOT [21] 31.87 45.66 48.99 40.29 56.46 56.23 8.42 () 1080 (1) 7.24 ()

Plain [1] 10.72 13.57 091 | 54.98 77.12 67.55 | 4426 () 63.55(1)  68.46 (1)

SNIP [14] 67.22 85.07 51.09 | 84.66 96.38 77.83 | 17.44 () 1131() 2674 ()

DiswWOT 73.98 91.38 84.83 73.02 91.26 82.98 0.96 (1) 0.12 (1) 1.85 (1)
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Figure 1. Left: Correlation of distill accuracy & NWOT score on
search space Sp. Right: Correlation of vanilla accuracy & NWOT

Table 3. Parameters (K), vanilla accuracy (%), distillation accuracy
(%), and prediction scores (10~*) of DisWOT for the student on
search space So.
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Group  Student Param. Vanilla Acc. Distill Acc. DisWOT
Al ResNet[7,1,3]  259.89 69.13 71.01 4.41
A2 ResNet[3,3,3] 278.32 69.57 70.76 3.34
Bl ResNet[7,5,3] 334.13 70.76 72.58 5.44
B2 ResNet[1,7,3] 343.22 70.77 72.18 5.20
Cl ResNet[5,5,7]  620.72 71.93 74.86 7.37
C2 ResNet[3,7,7] 648.50 72.45 74.42 7.33
D1 ResNet[7,3,5] 444.98 72.04 73.36 4.85
D2 ResNet[5,5,5] 472.76 72.09 73.94 8.17

Figure 2. Left: Correlation of vanilla accuracy & distill accuracy
on search space Sp. Right: Correlation of distilling accuracy &
DisWOT score on search space So.

large discrepancy between them, with an 8% difference in
Kendall’s Tau. Figure 2 (left) demonstrates the ranking cor-
relation between vanilla accuracy and distillation accuracy.
Surprisingly, their correlation is only 0.84, which indicates
that there is a non-negligible gap between distillation results
and vanilla results. On the one hand, it indicates that a new
zero-cost metric needs to be designed to improve the ranking
consistency for the distillation. On the other hand, vanilla
accuracy can be used as a rough measure of ranking con-
sistency when distillation accuracy is unavailable. Figure 2
(right) illustrates that our proposed DisWOT achieve better
ranking consistency of distillation accuracy on search space
So.

Analysis of detailed examples. Table 3 summarizes 4
groups of specific student pairs with vanilla-distill gaps. For
groups A and B, despite student models A2, B2 having more

A 4. Semantic properties of random networks

DisWOT leverages the semantic similarity metric of a ran-
domly initialized teacher-student model to predict distillation
performance, abandoning the training-based NAS paradigm.
Models with various architectures have different semantic
features because of their different effective receptive fields.
To represent semantic and localization information, Gradient-
weighted Class Activation Mapping (Grad-CAM [25]) meth-
ods have been widely adopted in weakly supervised object
localization and model interpretability [2]. Recently, several
studies [2, 28] reveal that randomly initialized models also
have favorable semantic localization capabilities. As shown
in the visual localization heatmaps of Figure 3, we can intu-
itively observe that randomly initialized networks can locate
a single object without any training. The visualization results
demonstrate that semantic information exists even in random
networks, which can localize the objects in an image. In
addition, we evaluate different strategies (e.g. CAM, Grad-
CAM, and SCDA [28]) for semantic localization maps and
find that Grad-CAM achieves stable prediction performance
for the semantic similarity metric. Thus, we adopt the Grad-
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Figure 3. Localization results of a randomly initialized network
on ImageNet, VOC2007, and CUB-200. The network can localize
the objects in an image, with a small standard deviation between
different trials. Note that this figure is from Tobias [3].

CAM of deeper layers to capture the informative relation
similarity in this paper.

A.5. Comparisons with different NAS approaches.

We presents the results of more NAS methods in this
section and find that our proposed DisWOT is better able to
distinguish good architectures than both One-shot NAS and
Zero-shot NAS. As shown in Table 7 and 4, we compare
DisWOT with one-shot NAS (e.g. ENAS [23], SETN [6],
SPOS [7]) and zero-shot NAS(a.k.a. Zen-NAS [19]). Results
demonstrate that DisWOT achieves better performance than
its counterparts in distillation and classification results. In

addition, we conduct more correlation evaluation in Tab. 5.

The results show that DisWOT surpasses other proxies in
the NAS-Bench-101/101-KD/201-KD and DisWOT (M)
achieves superior correlations than DisWOT (M,.), which
are consistent with findings in space Sp.

Table 4. Top-1 accuracy (%) of different NAS algorithms under
distill training on NAS-Bench-201 [5].

Datasets ENAS [23] SETN[6] SPOS[7] Zen-NAS[19] DisWOT

CIFAR-10 34.94 81.61 92.98 89.60 93.55
CIFAR-100 11.14 59.78 7291 71.86 74.21
ImageNet16-120  11.53 29.91 43.50 39.44 47.30

A.6. About KD-based zero-cost proxies.

In this section, we present DisWOT as a new universal
zero proxy and propose a series of KD-based zero proxies
based on this motivation. As shown in Table 6, we further
provide the ranking correlation of various KD-based zero-
cost proxies on three datasets. We adopt the optimal archi-
tecture in the search space of NAS-Bench-201 as a teacher
network and conduct 10 independent experiments of three
knowledge distillation methods (a.k.a., CC [22], KD [10],
and NST [13]). We observe that DisWOT achieves an ac-
ceptable ranking correlation on three datasets. NST [13]
show impressive ranking ability, which is the best KD-based
zero-proxies in DisWOT framework. DisWOT reveals better

Table 5. “mean=std %” Spearman correlation on NAS-Bench-101
and NAS-Bench-201. NAS-Bench-101/201-KD denotes to distill
accuracies of the architectures on NAS-Bench-101/201.

Method NAS-Bench-101  NAS-Bench-201 NAS101-KD NAS201-KD
FLOPs 30.81%+0.00 63.38%+0.06  15.56%+0.04  64.55%=0.01
Fisher -38.81%+0.14 35.91%+0.09 -33.92%=0.14 4.45%40.08
Grad_Norm -39.23%+0.08 58.70%+0.11  -39.16%=+0.01  -10.01%=+0.11
SNIP -29.01%=+0.09 58.17%=+0.15  -21.78%+0.02  16.91%=+0.10
Synflow 43.69%+0.12 74.61%+0.08  20.36%=+0.08  74.63%=+0.02
NwWOT 32.84%+0.51 64.41%+0.08  22.97%+0.04  35.27%=+0.03
DisWOT (M) 49.61%+0.05 65.74%+0.07  50.16%+0.09  53.88%40.06
DisWOT (M) 30.74%+0.06 56.46%+0.08  42.94%+0.11  4527%=0.07

performance than most of zero-cost proxies under vanilla
training, as shown in Table 7.

Table 6. Ranking correlation of our KD-based zero-cost proxies on
NAS-Bench-201.

Datasets Method Kendall’s Tau  Spearman  Pearson
CC[22] 0.48 0.68 0.56
KD [10] 0.35 0.50 0.40
CIFAR-10 NST [13] 0.64 0.83 0.72
DisWOT 0.41 0.61 0.54
CC[22] 043 0.65 0.58
KD [10] 0.38 0.54 0.55
CIFAR-100 Nt 113 0.57 0.72 0.64
DisWOT 0.56 0.72 0.65
CC[22] 0.53 0.71 0.66
’ KD [10] 0.44 0.61 0.65
ImageNetl6  Nor 173 0.54 0.74 0.74
DisWOT 0.49 0.69 0.55

Table 7. Top-1 accuracy (%) of different NAS algorithms under
vanilla training on NAS-Bench-201 [5].

Datasets ENAS [23] SETN[6] SPOS[7] Zen-NAS[19] DisWOT

CIFAR-10 53.89 87.64 93.23 90.70 93.37
CIFAR-100 13.96 59.05 71.03 68.26 71.53
ImageNet16-120  14.84 32.52 42.19 40.60 45.50

B. Details of Search Space and Settings

In this section, we introduce the implementation details
in the three search spaces and the detailed training settings.

B.1. S, search space

Search space. As illustrated in Figure 8, we construct the
search space Sy based on ResNet20, a simple resnet designed
for CIFAR-10/100, where each building block consists of
two 3 x 3 convolutional layers and the depth of each residual
block is searched in set {1,3,5,7}. The search space size is
43 = 64 in total.

Implementation details. As for results of vanilla classifica-
tion results, we train each architecture in the search space .Sy
with the same strategy. For each architecture in the search
space Sp, we adopt ResNet110 as a teacher network. Specif-
ically, we train each architecture via momentum SGD, using



Table 8. Supernet architecture of the Sy search space. Each line
describes a sequence of 1 or more identical layers, repeated repeat
times. All layers in the same sequence have the same number of
output channels.

input block channels | repeat | stride
322 %3 3 x 3 conv 16 1 2
322 x 16 Res Block 16 [1,3,5,7] 2
162 x 16 Res Block 32 [1,3,5,7] 2
82 x 32 Res Block 64 (13571 | 2
82 x 64 | Global Avgpool - 1 -
64 FC 100 1 -

cross-entropy loss for 240 epochs. We set the weight decay
as Se-4 and adopted a multi-stage scheduler to decay the
learning rate from 0.1 to 0. We use the random flip with the
probability of 0.5, the random crop 32 x 32 patch with 4
pixels paddings, and the normalization over RGB channels.
All of the experiments are based on CIFAR-100 datasets. As
for the distillation results, the vanilla knowledge distillation
methods [10, 15-18,30,30] are adopted. Specifically, we
conduct experiments based on the CRD [26]. For KD [10],
we follow the Equation | and set « = 0.9 and p = 4.

Lxr = ap’CE (o (ZT/p),U(zS/p)) (1)

where 2T and z° denote the logits of teacher and student,
respectively. p is the temperature, « is a balancing weight,
and o is a softmax function. CE denotes the cross entropy
loss.

B.2. S, search space

Search space. The search space S is following the cell-
based search space NAS-Bench-201 [5], where a cell is
represented as a directed acyclic graph (DAG). Each edge in
search space S is associated with an operation selected from
a predefined operation set, which consists of (1) zero, (2)
skip connection, (3) 1 x 1 convolution, (4) 3 x 3 convolution,
and (5) 3 x 3 average pooling layer. The DAG has 4 nodes,
each representing the sum of all features from previous nodes.
The search space size of Sy is 15,625 in total.
Implementation Details. We randomly sampled 50 candi-
date architectures to evaluate ranking consistency. All exper-
iments are implemented on a single NVIDIA 3090Ti GPU,
with the baseline from the AutoDL [5]. We recommend us-
ing a network with higher complexity or better performance
in the search space as the teacher network. The process of
DisWOT is divided into three steps: (1) Determine a specific
teacher network (deeper or more complex). (2) Perform an
evolutionary search with DisWOT metrics to obtain the best
student network. (3) Distill the student network with vanilla
KD [11] based on a specific teacher network. The distillation
setting is the same as Section B.1.

Searched architectures. For other NAS methods, the

searched architectures (see Table 9) of RS [5], ENAS [23],
SETN [6] and SPOS [4,7,12,29] are borrowed from the offi-
cial implementation [5], and the remaining zero-shot NAS
methods utilize the same evolutionary search algorithm. Ex-
pressly, we set the initial population size as 20, and the
sample size as 10. The total evolution search cycle is set
as 5,000. We calculate the zero-proxy score with only one
batch of data as fitness during evolution. The teacher net-
work used in DisWOT is the best architecture in the search
space.

B.3. S search space

Search space. Following NDS [24], we design the search
space for CIFAR and ImageNet, respectively. The search
space designed for CIFAR consists of a stem, followed by
6 stages, and a head, as shown in Table 10. The i-th stage
consists of d; blocks with ¢; channels and stride of s; €
{1,2}. The number of channels ¢; needs to be divisible by
8, and the minimal number of channels should be larger than
8. The candidate blocks can be residual blocks or bottleneck
blocks defined in ResNet, and the kernel size can be chosen
from set {3,5,7}. As shown in Table 11, the search space
designed for ImageNet consists of 4 stages, following the
configuration of ResNet18.

Table 10. Design space parameterization of So for CIFAR-10/100.
"POOL" denotes the global average pooling, and "FC" denotes a
fully connected network.

stage block channels repeat stride
steam 3 X 3 conv Co 1 1
stagel {block} c1 dq S1
stage?2 {block} Co do S9
stage3 {block} c3 ds S3
stage4 {block} C4a da S4
stage5 {block} cs ds S5
stage6 {block} Ce dg Sg

head POOL + FC 10 -

Table 11. Design space parameterization of S> for ImageNet.
"POOL" denotes the global average pooling, and "FC" denotes
fully connected network.

stage block channels repeat stride
steam 7 x 7 conv Co 1 2
stagel {block} c1 dy S1
stage2 {block} Co dq So
stage3 {block} c3 dq S3
stage4 {block} Cq dq S4

head POOL + FC 1000 - -

Training settings. We search the ResNet18 level network



Table 9. Searched architectures of NAS algorithms. The searched results are denoted by a string from NAS-Bench-201 API [5].

Searched architectures

RS [5]
ENAS [23]
SETN [6]
SPOS [7]
Zen-NAS [19]
NWOT [21]
DisWOT(ours)

Iskip_connect~O0l+Inor_conv_3x3~0lskip_connect~1l+Inor_conv_3x3~0lnor_conv_1x1~1lavg_pool_3x3~-2|
Iskip_connect~0l+lavg_pool_3x3~0lskip_connect~1I+lavg_pool_3x3~0lskip_connect~1Iskip_connect~2I
Inor_conv_3x3~0l+Iskip_connect~O0lskip_connect~1l+Iskip_connect~Olskip_connect~1lavg_pool_3x3~2I
Iskip_connect~Ol+Inor_conv_1x1~0lnor_conv_3x3~1l+Inor_conv_1x1~0lavg_pool_3x3~1Inor_conv_3x3~2|
Iskip_connect~O0l+Inor_conv_3x3~0lnor_conv_3x3~1I+Iskip_connect~0lskip_connect~1Inor_conv_3x3~2|
Inor_conv_1x1~0l+Inor_conv_3x3~0nor_conv_1x1~1l+Inor_conv_1x1~0lnor_conv_3x3~1Inor_conv_1x1~2|
Iskip_connect~Ol+Inor_conv_3x3~0lnor_conv_Ix1~1l+Inor_conv_1x1~0lnor_conv_3x3~1lnor_conv_3x3~2|

regarding the search space in NDS [24]. Specifically, we
limit the number of parameters to less than 13M and the
depth of the network to up to 20 layers and find the optimal
network by evolution algorithm with the DisWOT metric.
Please refer to Section C.1 for more details about the evo-
lutionary search for the search space S5. Specifically, we
adopt ResNet34 as a teacher network and conduct a vanilla
knowledge distillation process [1 1] with p = 1 and o = 3 as
shown in Equation 1. For ImageNet, we follow the standard
PyTorch practice, and the batch size is 256.

Searched architectures. After the evolutionary search, we
presented the optimal student network obtained for CIFAR
and ImageNet, as shown in the Table 12 and Table 13, re-
spectively. We observe that the searched architecture of
DisWOT has very different characteristics from the artifi-
cially designed student architecture, i.e., DisWOT prefers
student networks with larger convolutional kernels in shal-
low layers. Generally speaking, teacher networks tend to
have deeper layers and thus have a larger receptive field.
Guided by the teacher network, DisWOT favors larger con-
volutional kernels in the shallow layers so that the receptive
field of the student network is as close to that of the teacher
as possible. However, the network searched on ImageNet
only changed the number of channels under the parameter
restriction. We infer that expanding the kernel size leads to a
massive amount of additional parameters, which will lead to
exceeding the budget. We infer that the network will prefer
a larger kernel if a sufficient budget is available.

Table 12. Search results of the ResNet-like search space for CIFAR-
10/100. "Basic" denotes the basic block proposed in ResNet [9].

input block channels | repeat | stride
322 x 3 | 3x3conv 88 1 1
322 x 88 | Basic7x 7 96 3 1
322 x 120 | Basich x 5 192 2 2
162 x 192 | Basic5 x 5 176 2 1
162 x 96 | Basic 5 x 5 168 3 2
82 x 168 | Basic 3 x 3 112 3 2
4% x 112 | Basic 3 x 3 512 1 1
512 POOL + FC 1000 1 -

Table 13. Search results of the ResNet-like search space for Ima-
geNet under 13M parameter limit. "Basic" denotes the basic block
proposed in ResNet [9].

input block channels | repeat | stride
2242 x 3 7 X 7 conv 96 1 2
1122 x 96 | Basic 3 x 3 64 3 2
562 x 64 | Basic 3 x 3 128 2 2
28% x 128 | Basic 3 x 3 256 2 2
142 x 256 | Basic 3 x 3 512 2 2

512 POOL + FC 1000 1 -

Table 14. DisWOT-11.7M based on ImageNet (Searched for seg-
mentation task.)

block kernel in out stride  bottleneck  # layers
Conv 7 3 64 2 - 1
Res 3 64 64 2 64 2
Res 3 64 128 2 128 2
Res 3 128 256 2 256 2
Res 3 256 512 2 512 2
Conv 1 512 2384 1 - 1

C. Details of Algorithm for DisWOT

In this section, we describe the implementation details of
the evolutionary alorhigtm and the implementation code of
DisWOT.

C.1. Implementation of Evolutionary Algorithm

Here we adopt Evolutionary Algorithm (EA) as an archi-
tecture generator to find optimal student network. In this
section, we further describe the mutation process of the evo-
lutionary algorithm in details. In the evolutionary algorithm,
we randomly generate P architectures with constraints C'
and then select the top — k architectures by DisWOT metric
from the population. Then we randomly select the parent
architecture from the top — k architectures and mutate it.



The mutation algorithm is presented in Algorithm 1. Specif-
ically, for S5 search space, we provide basic blocks with a
kernel size of {3,5,7} and choose {0.67,0.8,1.25,1.5} as the
mutation range for channels. The number of channels should
be divisible by 8, and the max number of channels is 2048.
The depth of chosen block can be mutated in range {+1, -1}.
After mutating the architecture, we check whether it is valid,
e.g., the parameter is meed the predefined constraint.

Algorithm 1 Mutation Algorithm for DisWOT

Input: Parent architecture A;, Search space S.

Output: Mutated architecture P

: Randomly select a block a; from Parent architecture A;;
: Randomly mutate the kernel size of a; from S({block});
: Randomly mutate the width of a; from S(c;);

: Randomly mutate the depth of a; from S(d;);

: Check whether the mutated architecture is valid;

. Return the mutated architecture ]51-;

[ R I O R S R

C.2. Implementation of metric in DisWOT

The section presents the implementation of semantic sim-

ilarity metric and relation similarity metric in DisWOT. The
semantic similarity metric measures the inter-correlation on
the accumulated Grad-CAM for teacher and student net-
works, whose calculation needs one forward and one back-
ward to get the localization information. The relation simi-
larity metric measures the relationship between input sam-
ples whose activations of teacher and student networks are
needed.
Implementation of semantic similarity metric. Here, we
present the implementation code of the relation similarity
metric, as shown in List C.2. We need the Grad-CAM maps
of all classes for calculation, which needs at least one for-
ward and one backward to get the Grad-CAM similarity.
Different from ICKD [20], there are mainly two differences:
(1) The Gaussian initialized teacher network and student
network is backpropagated only once. (2) We only use the
grad of the fully-connected layer for calculation.

Listing 1. The PyTorch implementation of semantic similarity
metric.

criterion(t_logits, label) .backward/()
criterion(s_logits, label) .backward()
# Grad-cam of fc layer.
t_grad_cam = teacher.fc.weight.grad
s_grad_cam = student.fc.weight.grad
# Compute channel-wise similarity
return -1 =
channel_similarity (t_grad_cam,
s_grad_cam)

def channel_similarity(f_t, f_s):
bsz, ch = f_s.shape[0], f_s.shape[l]
# Reshape
f s = f_s.view(bsz, ch, -1)
f t = f_t.view(bsz, ch, -1)
# Get channel-wise similarity matrix

emd_s = torch.bmm(f_s, f_s.permute (0,
2, 1))

emd_s = F.normalize (emd_s, dim=2)

emd_t = torch.bmm(f_t, f_t.permute (0,
2, 1))

emd_t = F.normalize (emd_t, dim=2)

# Produce L_2 distance

G_diff = emd_s - emd_t

return (G_diff x G_diff) .view(bsz,
-1).sum() / (ch x bsz)

Implementation of relation similarity metric. Here we
present the implementation code of relation similarity, as
shown in List C.2. With only the logits of the teacher and
student network, our relation similarity metric is easy to
implement. There are mainly two differences compared with
SP [27]: (1) The teacher and student networks are initialized
with kaiming initialization [8], which means the teacher
network did not undergo any backpropagation. (2) Here, we
only used the activation before global average pooling as
input, and the activations of shallow layers are not utilized.
In fact, we find that activations closer to the output are more
informative. When using activations from shallow layers,
experiments demonstrate that the relation similarity ranks
poorly.

Listing 2. The PyTorch implementation of relation similarity met-
ric.

import torch
import torch.nn as nn
import torch.nn.functional as F

def semantic_similarity_metric(teacher,
student, batch_data):
criterion = nn.CrossEntropyLoss ()
image, label = batch_data
# Forward once.
t_logits = teacher.forward (image)
s_logits = student.forward (image)
# Backward once.

import torch
import torch.nn as nn
import torch.nn.functional as F

def relation_similarity_metric(teacher,
student, batch_data):
image, label = batch_data
# Forward pass
t_feats =
teacher. forward_features (image)
s_feats =
student.forward_features (image)



# Get activation before average pooling

t_feat = t_feats[-2]

s_feat = s_feats[-2]

# Compute batch similarity

return -1 * batch_similarity(t_feat,
s_feat)

def batch_similarity(f_t, f_s):

# Reshape

f_s = f_s.view(f_s.shape[0], -1)

f t = f_t.view(f_t.shapel0], -1)

# Get batch-wise similarity matrix
G_s = torch.mm(f_s, torch.t(f_s))
G_s = F.normalize (G_s)

G_t = torch.mm(f_t, torch.t(f_t))
G_t = F.normalize (G_t)

# Produce L_2 distance

G_diff = G_t - G_s

return (G_diff » G_diff).view (-1,
1) .sum() / (bsz * bsz)
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