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1. Depth Scaler Optimization

Our system adopts monocular depth map predictions
from off-the-shelf networks [2] using the DPT back-
bone [11]. However, these depth priors are not metric and
the scale of each depth prediction is independent of others.
Thus, we define the unary and binary (pairwise) constraints
to estimate consistent metric scales.

1.1. Unary Constraints

Our pipeline relies on COLMAP’s [12] sparse recon-
struction for unary constraints. COLMAP supports sparse
reconstruction with or without poses. Both modes start
with SIFT [6] feature extraction and matching. The with
pose mode then runs triangulation, while the without pose
mode runs bundle adjustment to also estimate poses. With
pose mode usually runs within 1 min, while the without
pose mode often finishes around 5 mins for a sequence with
several hundred frames. While our system integrates both
modes, for fair comparison on the benchmark datasets, we
adopt the with pose mode in quantitative experiments where
ground truth poses from RGB-D SLAM are given. Fig. 1
shows the sparse reconstructions from the with pose mode.

1.2. Binary Constraints

Once we have camera poses and the sparse recon-
struction, we can define which triangulated feature points
are visible to which cameras (covisible). Thus, we can
create pairwise reprojection constraints between frames,
similar to loop closures in the monocular SLAM con-
text [8]. We directly retrieve the feature matches obtained
by COLMAP, and setup such frame-to-frame covsibility
constraints. Fig. 1 shows the covisibility matrices, where
entry (i, j) indicates the number of covisible features be-
tween frame i and j. They are used to establish binary con-
straints between frames for refining monocular depth scales.
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2. Volumetric Fusion
Eq. 9 in the main paper shows the least squares to ini-

tialize voxel-wise SDF. The more detailed implementation
follows KinectFusion [9], where a truncation function ψ is
used to reject associations.

θd(v) = argmin
d

∑
i

∥d− ψ
(
do, µ

)
∥2, (1)

do = dv→i −Di(pv→i)ϕi(pv→i), (2)
ψ(x, µ) = min(x, µ), (3)

where µ is the truncation distance. µ is associated with the
Dilate operation and voxel block resolution in Eq. 7-8 in
the main paper. Formally, we define
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where L is the voxel block size, xi are quantized grid points
around, and R is the dilation radius. We use R = 2 (corre-
sponding to two 83 voxel blocks) to account for the uncer-
tainty around surfaces from the monocular depth prediction.
Correspondingly, we use µ = L ·R to truncate the SDF.

The volumetric fusion runs at 50 Hz with RGB and SDF
fusion, and at 30 Hz when additional semantic labels are
also fused, hence serves as a fast initializer.

3. Hyper Parameters
We followed [17]’s hyperparameter choices and used

λd = 0.1, λn = 0.05 for the rendering loss.
For regularizors, we obtained from hyper param sweeps

from the 0084 scene of ScanNet that λeik = 0.1 for the
Eikonal loss, and λcolor = 10−3, λlabel = 0.1, λnormal = 1
for the CRF loss.

In Gaussian kernels, we fix σsdf = 1.0 and σcolor = 0.1.

4. Evaluation
4.1. Metrics

We follow the evaluation protocols defined by Manhat-
tanSDF [4], where the metrics between predicted point set
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Figure 1. Sparse reconstruction and covisibility matrix of ScanNet scenes selected by ManhattanSDF [4].

P and ground truth point set P ∗ are

D(p, p∗) = ∥p− p∗∥, (5)

DAcc(P, P
∗) = mean

p∈P
min

p∗∈P∗
D(p, p∗), (6)

DComp(P, P
∗) = mean

p∗∈P∗
min
p∈P

D(p, p∗), (7)

Prec(P, P ∗) = mean
p∈P

((
min

p∗∈P∗
D(p, p∗)

)
< T

)
, (8)

Recall(P, P ∗) = mean
p∗∈P∗

((
min
p∈P

D(p, p∗)
)
< T

)
, (9)

F-score(P, P ∗) =
2 · Prec · Recall

Prec + Recall
, (10)

where T = 5cm.

4.2. Generation of P and P ∗

We follow previous works [4, 17] that applied TSDF re-
fusion to generateP for evaluation: use Marching Cubes [5]
to generate a global mesh; render depth map from mesh at
selected viewpoints to crop points out of viewports; apply
TSDF fusion [18] to obtain the final mesh and point cloud
P . For fairness, we render depth at the resolution 480×640
for all approaches to be consistent with input (in contrast to
MonoSDF that uses 968× 1296 in their released evaluation
code), and conduct refusion to a voxel grid at the resolution
of 1cm.

To ensure the same surface coverage, we generate
ground truth P ∗ at the same viewpoints with the same im-
age and voxel resolution, only replacing rendered depth
with ground truth depth obtained by an RGB-D sensor.

5. Additional Experimental Results

5.1. Ablation of scale optimization

To further illustrate the necessity of per-frame scale opti-
mization, we show quantitative reconstruction results with-
out scale optimization in Table 1. Here, volumetric fusion
is conducted on an estimated single scale factor across all
frames between monocular depth and SfM, resulting in poor
initial reconstruction.

Table 1. Initial reconstruction results without per-frame scale op-
timization (c. f. Ours (Init) in Table 2-3.)

Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑
ScanNet 0.42 0.19 0.13 0.28 0.17
7-Scenes 0.36 0.12 0.19 0.43 0.26

5.2. Fusion and Refinement

Please see video supplementary for the incremental fu-
sion from scaled depth, and the refinement stage that con-
verges to general shapes within several hundred steps.

5.3. Scene-wise statistics on ScanNet

We use reconstructed mesh provided by Manhat-
tanSDF [4], and report scene-wise statistics in Table 2. Re-
constructions and corresponding ground truths are shown in
Fig. 2.

It is observable that our reconstructions have low error at
fine details with rich textures (e.g. 0050, furniture in 0580),
but problems exist at texture-less regions (e.g. walls in 0580

https://youtu.be/87guWiDZkSI


and 0616, floor in 0084) due to the inaccurate scale es-
timate from sparse reconstructions. We plan to improve
these by learning-based sparse or semi-dense reconstruc-
tion, e.g. [13, 14].

5.4. Scene-wise statistics on 7-scenes

The reconstructed mesh and scene-wise statistics are
not provided by ManhattanSDF [4] for COLMAP, NeRF,
UNISURF, NeuS, VolSDF, and ManhattanSDF. Therefore,
we reuse their reported averages as a reference in the main
paper. Here we report scene-wise numbers in Table 3 for
the state-of-the-art MonoSDF [17] and our method. Recon-
structions and ground truths are in Fig. 3.

7-scenes have challenging camera motion patterns and
complex scenes, thus the overlaps between viewpoints are
small, leading to reduced accuracy for all the approaches.
Although our approach produces less accurate floor and
walls with fewer features, it achieves fine reconstruction of
desktop objects in general.

References
[1] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, pages 5828–5839, 2017. 4

[2] Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir
Zamir. Omnidata: A scalable pipeline for making multi-
task mid-level vision datasets from 3d scans. In ICCV, pages
10786–10796, 2021. 1

[3] Ben Glocker, Shahram Izadi, Jamie Shotton, and Antonio
Criminisi. Real-time rgb-d camera relocalization. In Inter-
national Symposium on Mixed and Augmented Reality (IS-
MAR). IEEE, October 2013. 5

[4] Haoyu Guo, Sida Peng, Haotong Lin, Qianqian Wang,
Guofeng Zhang, Hujun Bao, and Xiaowei Zhou. Neural 3d
scene reconstruction with the manhattan-world assumption.
In CVPR, pages 5511–5520, 2022. 1, 2, 3, 4

[5] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4):163–169, 1987. 2

[6] David G Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004. 1

[7] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
4

[8] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D
Tardos. Orb-slam: a versatile and accurate monocular slam
system. IEEE Trans. Robotics, 31(5):1147–1163, 2015. 1

[9] Richard A Newcombe, Shahram Izadi, Otmar Hilliges,
David Molyneaux, David Kim, Andrew J Davison, Pushmeet
Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon.

Kinectfusion: Real-time dense surface mapping and track-
ing. In 2011 10th IEEE international symposium on mixed
and augmented reality, pages 127–136. Ieee, 2011. 1

[10] Michael Oechsle, Songyou Peng, and Andreas Geiger.
Unisurf: Unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. In ICCV, pages 5589–
5599, 2021. 4
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Table 2. Scene-wise quantitative results on ScanNet.

Method 0050 0084

Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑ Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑
COLMAP [12] 0.049 0.129 0.707 0.531 0.607 0.032 0.121 0.807 0.577 0.673
NeRF [7] 0.704 0.081 0.215 0.517 0.304 0.733 0.248 0.157 0.213 0.181
UNISURF [10] 0.432 0.087 0.309 0.482 0.376 0.594 0.242 0.218 0.339 0.266
NeuS [15] 0.091 0.103 0.528 0.455 0.489 0.231 0.365 0.159 0.090 0.115
VolSDF [16] 0.071 0.071 0.600 0.599 0.599 0.507 0.165 0.163 0.247 0.196
ManhattanSDF [4] 0.032 0.050 0.849 0.755 0.800 0.029 0.041 0.822 0.784 0.802
MonoSDF (MLP) [17] 0.025 0.054 0.865 0.713 0.781 0.036 0.048 0.700 0.646 0.672
MonoSDF (Grid) [17] 0.027 0.045 0.854 0.764 0.807 0.035 0.043 0.796 0.774 0.785

Ours (Init) 0.034 0.051 0.775 0.684 0.727 0.047 0.048 0.705 0.725 0.715
Ours (+Rendering) 0.026 0.044 0.875 0.780 0.825 0.038 0.046 0.762 0.748 0.755
Ours (+CRF) 0.026 0.044 0.880 0.788 0.832 0.043 0.043 0.750 0.780 0.765

Method 0580 0616

Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑ Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑
COLMAP [12] 0.169 0.300 0.204 0.112 0.145 0.045 0.406 0.689 0.230 0.344
NeRF [7] 0.402 0.186 0.125 0.216 0.159 0.582 0.196 0.249 0.263 0.256
UNISURF [10] 0.392 0.192 0.131 0.188 0.155 0.571 0.148 0.237 0.300 0.265
NeuS [15] 0.206 0.275 0.167 0.114 0.135 0.137 0.140 0.330 0.289 0.308
VolSDF [16] 0.197 0.183 0.197 0.189 0.193 0.736 0.129 0.176 0.284 0.217
ManhattanSDF [4] 0.205 0.240 0.149 0.124 0.135 0.058 0.066 0.684 0.513 0.586
MonoSDF (MLP) [17] 0.025 0.040 0.867 0.759 0.809 0.039 0.087 0.702 0.488 0.576
MonoSDF (Grid) [17] 0.039 0.048 0.718 0.661 0.688 0.033 0.048 0.815 0.646 0.721

Ours (Init) 0.076 0.059 0.574 0.582 0.578 0.076 0.097 0.566 0.427 0.487
Ours (+Rendering) 0.070 0.080 0.760 0.636 0.692 0.046 0.070 0.699 0.504 0.586
Ours (+CRF) 0.046 0.050 0.707 0.682 0.694 0.057 0.080 0.659 0.504 0.571
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Figure 2. Error heatmap from our reconstruction (first row) to groundtruth (second row) for each scene in ScanNet [1]. Points are colorized
by distance error ranging from 0 (blue) to 5cm (red) to its nearest neighbor in ground truth. Points with error larger than 5cm are regarded
as outliers and colored in black.



Table 3. Scene-wise quantitative results on 7-Scenes.

Method chess heads

Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑ Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑
MonoSDF (MLP) [17] 0.160 0.390 0.250 0.132 0.173 0.068 0.188 0.586 0.353 0.440
MonoSDF (Grid) [17] 0.113 0.143 0.324 0.267 0.293 0.133 0.099 0.305 0.327 0.315

Ours (Init) 0.164 0.108 0.278 0.350 0.310 0.186 0.083 0.288 0.401 0.335
Ours (+Rendering) 0.147 0.111 0.367 0.389 0.378 0.074 0.062 0.543 0.568 0.555
Ours (+CRF) 0.147 0.107 0.368 0.391 0.379 0.071 0.057 0.559 0.626 0.591

Method office fire

Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑ Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑
MonoSDF (MLP) [17] 0.087 0.128 0.338 0.236 0.278 0.075 0.064 0.592 0.522 0.555
MonoSDF (Grid) [17] 0.147 0.077 0.539 0.471 0.503 0.061 0.081 0.564 0.504 0.533

Ours (Init) 0.168 0.068 0.398 0.483 0.436 0.087 0.058 0.503 0.616 0.554
Ours (+Rendering) 0.180 0.081 0.330 0.400 0.362 0.160 0.072 0.426 0.445 0.435
Ours (+CRF) 0.164 0.080 0.340 0.400 0.367 0.162 0.068 0.474 0.490 0.482

chess heads office fire
Figure 3. Error heatmap from our reconstruction (first row) to groundtruth (second row) for each scene in 7-Scenes [3]. The colorization is
the same as Fig. 2.
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