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Figure 7. Quantitative evaluation on the influence of Implicit Iden-
tity Leakage. Here BC' stands for binary classifiers. Results show
that compared with the binary classifier, features of different iden-
tities in our model overlapped with each other more. Such results
were more prominent on cross-dataset evaluations (Figure 7b).

A. Quantitative Analysis of the Implicit Iden-
tity Leakage

In this section, we conduct an experiment to evaluate the
influence of Implicit Identity Leakage quantitatively.

A.1.ID Overlap Experiment

When the model extracts identity information from im-
ages, we argue that features of different identities tend to be
roughly separable. In other words, features of each iden-
tity are unlikely to overlap with others. In this way, we
expect to measure whether features of different identities
are separable in the feature space by counting the number
of overlapping identities (IDs) for each identity. To ensure
the diversity of images for each identity, we sampled 5 im-
ages at an equal interval from each video for all identities
in the dataset. Then, we used principal component analysis
(PCA) to project the features of images into 2D space. For
each identity, we considered the rectangle area of its pro-
jected features as the region of the identity. Two identities
were considered to overlap with each other when the Inter-
section over Union (IoU) of their regions was no less than
the threshold.

We evaluated the influence of the Implicit Identity Leak-
age on the binary classifier and our model quantitatively.
Both the binary classifier and our model were trained on
FF++ [9] and tested on FF++ [9] and Celeb-DF [6]. As
shown in Figure 7, each box-and-whisker denotes the dis-
tributions for the number of overlapping IDs across all iden-
tities in the dataset, given different values of the thresh-
old. Results show that features of different identities in our
model overlapped with each other more, especially on the
cross-dataset evaluation (Figure 7b). Such results demon-
strate that our model reduced the influence of Implicit Iden-
tity Leakage.

(a) Sub-dataset division (b) AUC on Celeb-DF  (c¢) AUC on FF++

Figure 8. Verifying that our model learned various artifact fea-
tures in a data-driven manner. We split five training sets follow-
ing Figure 8a to train the model and test the performance respec-
tively. When the number of forgery methods in the training set
increased, our model had higher performance in both in-dataset
and cross-dataset evaluation.

B. Verification of Learning Various Artifacts

In this part, we conduct an experiment to verify that
when reducing the influence of Implicit Identity Leakage,
our model can capture various artifact features from dif-
ferent manipulation algorithms in a data-driven manner.
Thanks to the division of training data in the FF++ dataset
according to different face forgery methods, we split five
sub-training sets following Figure 8a, and further explored
the relationship between the number of manipulation al-
gorithms and the model performance in the in-dataset and
cross-dataset evaluation. Five different face-swap meth-
ods are corresponding to 5 sub-datasets in FF++. Both our
model and the binary classifier used ResNet-34 [4] as the
backbone and were tested on FF++ and Celeb-DF respec-
tively.

As shown in Figure 8b, due to the Implicit Identity Leak-
age, even if the number of manipulation algorithms in the
training set increased, the binary classifier still maintained
poor performance on the cross-dataset evaluation. In con-
trast, artifact features captured by our model were more
generalized as the number of manipulation algorithms in-
creased. Such results demonstrate that our model learned
various artifact features from forgeries in a data-driven man-
ner. Moreover, our approach also achieved higher perfor-
mance in the in-dataset evaluation with less training data.
Figure 8c indicates that when only using the Face2Face [10]
sub-dataset as the training set, compared with the binary
classifier, our approach got 17% AUC improvements in
FF++.

C. Effect of Different Backbones

In this section, we further explored the effect of dif-
ferent backbones for our model to demonstrate the broad
applicability of our method. Each model was trained by
FF++ and tested on FF++, Celeb-DF, and DFDC-V2 [2].
We used Frame-level AUC (FAUC) and Video-level AUC
(VAUC) as our metrics. Results in Table 7 show that our



In-dataset Evaluation

Cross-dataset Evaluation

Model DA Ours FF++ Celeb-DF DFDC-V2
FAUC VAUC FAUC VAUC FAUC VAUC
X X 99.19 99.78 59.78 65.82 51.34 5223
ResNet-18 v X 99.39 99.79 69.22 77.56 60.62 63.25
v v 99.36 ({ 0.03) 99.77 (4 0.02) 76.73 (1 7.51) 89.07 (1 11.51) 64.54 (1 3.92) 69.22 (1 5.97)
X X 99.42 99.88 58.69 64.05 48.69 48.73
ResNet-34 v X 99.41 99.74 71.45 80.07 59.41 62.46
v v 99.33 (4 0.09) 99.70 (4 0.18) 79.56 (1 8.11) 91.15 (1 11.08) 67.04 (1 7.63) 71.49 (1 9.03)
X X 99.47 99.83 61.87 69.63 48.84 49.49
ResNet-50 v X 99.32 99.70 68.38 75.92 60.33 62.67
v v 99.46 ({. 0.01) 99.76 (. 0.07) 76.78 (1 8.4) 88.16 (1 12.24) 65.52 (1 5.19) 69.80 (1 7.13)
X X 99.27 99.77 56.96 58.47 46.17 45.66
Xception v X 99.27 99.79 71.98 81.53 60.56 64.88
v v 99.37 (1 0.10) 99.89 (1 0.10) 74.92 (1 2.94) 86.69 (1 5.16) 63.74 (1 3.18) 67.52 (1 2.64)
X X 99.16 99.75 57.49 59.97 52.74 54.12
Efficient-b3 v X 99.44 99.81 73.39 84.24 64.54 68.96
v v 99.45 (1 0.01) 99.78 (. 0.03) 83.02 (1 9.63) 93.08 (1 8.84) 68.44 (1 3.90) 73.74 (1 4.78)

Table 7. Effect of different backbones. Here DA denotes the Data Augmentations. Results show that applying our method to different
backbones brought a significant improvement in cross-dataset evaluations, which demonstrates the broad applicability of our method.

model achieved great performances on the cross-dataset
evaluation when using different backbones. On average,
our method achieved 5.91% Video-AUC improvement on
DFDC-V2 and 9.77% Video-AUC improvement on Celeb-
DF, compared to the baseline. On the in-dataset evaluation,
our method maintained similar performance to the baseline,
decreasing only 0.04% Video-AUC on FF++ on average.
Such results show that reducing the influence of the Implicit
Identity Leakage helped our model achieve great perfor-
mances on cross-dataset evaluations among various back-
bones, which sheds new light on the model generalization
for the task of deepfake detection.

D. More Details about Loss Function

In this section, we introduce more details about the loss
function in the paper. To indicate images based on local
artifact areas, the loss of our model is designed as follows:

L :ﬁLdet+Lcls- (1)

where [ is a hyper-parameter; L., denotes the cross en-
tropy loss to measure the accuracy of the final prediction
(i.e. whether the image is manipulated); Lg; denotes the
artifact detection loss similar to [3, 7, 8].

To guide the Multi-scale Detection Module in our model
to localize the artifact areas and classify multi-scale an-
chors, Lge; is designed as follows:

1

Ldet - N(Lconf(xa C) + OéLloc(xa l7 g)) (2)

where o denotes a positive weight. Loy r (2, ¢) denotes the
confidence loss, which is a binary cross-entropy loss to clas-

sify each anchor (i.e. the fake or genuine anchor).

Leong(z,c) = — Z zijloged?® — Z (1 — @y;)loge;d
i€ Pos i1€Neg

3)

P
a exp(c;)
¢ Zpe{pos,neg} e:rp(cf)

where z;; € {1,0} denotes the indicator for matching the
i-th default anchor to the j-th ground truth of the artifact
area. The ¢-th anchor box is regarded as a positive sample
(i.e. x;; = 1) when the Intersection over Union (IoU) be-
tween the anchor box and the j-th ground truth of artifact
areas is greater than 0.9. ¢; denotes the class confidence.
Lioe(x,1,g) is a Smooth L1 loss [3] between ADM pre-
dictions (I) and artifact area positions (g). In concrete, we
regress the offsets for the center (cz, cy) of the default an-
chor (d) and for its width (w) and height (h).

Lloc(vag) = Z Z

i€ Pos me{cz,cy,w,h}
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E. More Visual Results of MFS

Figure 9 and Figure 10 show more visual results for the
global swap and the partial swap of Multi-scale Facial Swap
(MFS) respectively.

For the global swap in Figure 9, we randomly replace
the whole faces of fake images with faces of source images
or the other way around with a certain probability. When
replacing the faces of fake images with faces of source im-
ages, the newly generated MFS images contain similar iden-
tity information to source images. In this way, deepfake



detection models can learn subtle differences between fake
images (i.e. MFS images) and genuine images with less
influence of identity information on images, since they are
of almost the same identity. When replacing the faces of
source images with faces of fake images, the newly gen-
erated MFS images contain more blending artifacts than
fake images. As demonstrated in [5], such images are also
helpful to improve the generalization of deepfake detection
models.

For the partial swap in Figure 10, MFS exchanges the
most significant manipulated areas between source images
and fake images, with bounding boxes of different sizes.
When using small bounding boxes, the newly generated
MES images also share similar identity information with
source images, which helps to reduce the influence of
Implicit Identity Leakage. Moreover, MFS provides the
ground truth of local artifact areas, which helps our model
to concentrate more on the most-likely forged areas, with
less influence of other forgery-irrelevant areas on images.
Results in Table 2 of the paper show that MFS successfully
improved the generalization of deepfake detection models
by reducing the influence of Implicit Identity Leakage.

F. Discussion for the Utility of ID Representa-
tions

Recent method [1] showed the utility of ID representa-
tion is effective for the task of deepfake detection, which,
nevertheless, is not in conflict with our study. [1] trained
their model on real videos of different identities only, and
tested the performance based on a distance metric between
the test video and a set of genuine videos of the target ID
prepared in advance. Such a protocol could also be con-
sidered as the reduction of the influence of Implicit Identity
Leakage. Firstly, the training process required real videos
only. The misguidance of ID representation between real
and fake videos we discussed in this paper is naturally elim-
inated, since all identities are considered as genuine identi-
ties. Besides, during the inference process, they calculated
the distance metric between the test video and the preset
genuine videos of the target ID. In this scenario, the ID rep-
resentation of the two videos is aligned, which also weakens
the distraction of ID representation.
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Figure 9. More visual results for the global swap of MFS on various facial manipulation algorithms. For the global swap, we either
replace the whole faces of fake images with faces of source images or replace the whole faces of source images with faces of fake images
with a certain probability. The column of DSSIM indicates the differences between source images and MFS images.
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Figure 10. More visual results on the partial swap of MFS on various facial manipulation algorithms. For the partial swap, we
exchange the most significant manipulated areas between fake images and source images, with different sizes of bounding boxes (i.e.
20x40, 40x80, 80x120, 120x160). Specifically, we replace the chosen areas of source images with the corresponding areas of fake images.
The exchanged areas between source images and fake images are marked with rectangles. The column of DSSIM indicates the differences
between source images and MFS images.
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