
Supplementary Material for
“Residual Degradation Learning Unfolding Framework with Mixing Priors

across Spectral and Spatial for Compressive Spectral Imaging”

In this supplementary material, we first show the deriva-
tion of the formula for the proximal gradient descent (PGD)
algorithm. Then, we provide the RGB images of the test
scene and the visualization results of the spatial interaction.
Furthermore, we offer a detailed description of the stage
interaction and block interaction. Finally, we demonstrate
more visual comparison results on both simulation data and
real data.

The benchmark methods in our comparison include
three model-based hyperspectral image (HSI) reconstruc-
tion methods (i.e., TwIST [1], GAP-TV [15] and DeSCI
[10]) and four deep learning based methods (i.e., DGSMP
[7], HDNet [6], MST [3] and CST [9]). The peak-signal-
to-noise (PSNR) and the structural similarity index (SSIM)
[14] are employed to evaluate the performance of compet-
ing HSI reconstruction methods.

1. The formulation of proximal gradient de-
scent

Consider the unconstrained minimization problem of a
continuously differentiable function f : Rn → R:

min{f(x) : x ∈ Rn}. (1)

One of the simplest methods for solving eq. (1) is the
gradient algorithm which generates a sequence {xk} via:

x0 ∈ Rn, xk = xk−1 − ρ∇f(xk−1), (2)

where ∇ is the differential operator, weighted by the step
size ρ > 0. It is very well known that the gradient iteration
(eq. (2)) can be viewed as a proximal regularization of the
linearized function f at xk−1, and written equivalently as

xk = argmin
x

f(xk−1) + ⟨x− xk−1,∇f(xk−1)⟩

+
1

2ρ
∥x− xk−1∥2.

(3)

Adopting this same basic gradient idea to the regularized
problem:

min{f(x) + λJ(x) : x ∈ Rn}, (4)

leads to the iterative scheme:

xk = argmin
x

f(xk−1) + ⟨x− xk−1, ,∇f(xk−1)⟩

+
1

2ρ
∥x− xk−1∥2 + λJ(x).

(5)

After ignoring constant terms, this can be rewritten as

xk = argmin
x

1

2ρ
∥x− (xk−1 − ρ∇f(xk−1))∥2 + λJ(x).

Mathematically, the red part of the above function is a
gradient descent operation and the blue part can be solved
by the proximal operator proxλ,J .

2. RGB images of the testing scenes and the vi-
sualization of spatial interaction

Fig. 1 shows the RGB images of the 10 scenes and the
visualization of its corresponding spatial interaction. From
Fig. 1, we can see that the feature map of the spatial inter-
action highlights the image foreground. Aided by the spa-
tial interaction, the calculation of query(Q), key(K) and
value(V) in spectral self-attention branch pays more atten-
tion to the informative regions and suppresses the uninfor-
mative areas.

Figure 1. The RGB images of the 10 scenes and the visualization
of the spatial interaction of the bi-directional interaction.
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3. Stage Interaction and Block Interaction
Stage Interaction. The proposed stage interaction mod-

ule normalizes current stage features in a SPatial Adaptive
Normalization(SPAN) manner [11, 12]. SPAN uses pre-
vious stage features to generate modulation parameters.
The calculation of modulation parameters is formulated as
eq.(6a, 6b):

ψk−1
n = DConv(σ(Conv(F k−1

n ) + Conv(F k−1
N−n))),

(6a)

γk−1
n = DConv(σ(Conv(F k−1

n ) + Conv(F k−1
N−n))),

(6b)

where σ represents the activation function, F k−1
n and F̂ k

n

denote previous stage features and current stage features be-
fore normalization of nth block, respectively. ψk−1

n , γk−1
n

represent the generated modulation parameters of current
stage of nth block respectively. k is the number of stage
and N is the block number of MixS2 Transformer. Then
the current stage features are modulated as eq.(7):

F k
n = ψk−1

n ⊙ F̂ k
n + γk−1

n . (7)

The proposed stage interaction module has several merits.
First, information loss makes the network more vulnerable
due to repeated use of up- and down-sampling operations
in the encoder-decoder. Second, the multi-scale features of
one stage help enrich the features of the next stage. Third,
the network optimization procedure becomes more stable as
it eases the flow of information.

Block Interaction. The encoder-decoder networks [2,4,
8, 13] first gradually map the input to low-resolution rep-
resentations, and then progressively apply reverse mapping
to recover the original resolution. While these models ef-
fectively encode multi-scale information, they are prone to
sacrificing spatial details due to the repeated use of down-
sampling operations. To address this issue, inspired by [5],
we introduce the block interaction to allow information flow
from different scales within a single MixS2 Transformer.
Each block interaction takes the output of all encoder blocks
as an input and combines multiscale features using convo-
lutional layers. The output of the block interaction is deliv-
ered to its corresponding decoder block.

4. More visual comparison results on simula-
tion data

Fig.2-11 show more visual comparison results of the best
five competing methods with 28 spectral channels for 10
testing scenes. Ground truth, measurements, and RGB im-
ages are shown for reference. We compare our RDLUF-
MixS2 9stage with CST-L-Plus [9], MST-L [3], HDNet
[6] and DGSMP [7]. Thanks to the spectral self-attention
branch that implicitly models long-range dependencies, and
the multiscale convolution branch that improves texture and
detail modeling capabilities, and the spectral-spatial inter-
actions across them, the proposed method yields more de-
tailed content, cleaner textures, and fewer artifacts.

5. More visual comparison results on real data
Fig.12-16 show more visual comparison results with 28

spectral channels for the 5 real scenes. We compare the our
RDLUF-MixS2 3stage with MST [3], DeSCI [10], GAP-
TV [15] and TwIST [1]. From Fig.12-16, we can see that
using the ability to model long-range dependencies of the
spectral self-attention branch, the proposed method recon-
structs the visually pleasant image. By the help of the multi-
scale convolution branch and the bi-directional interaction,
the proposed method yields more detailed content, cleaner
textures.
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Figure 2. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method with 9stage (PSNR =
37.74dB, SSIM = 0.966), CST-L-Plus [9] (PSNR = 35.96dB, SSIM = 0.949), MST-L [3] (PSNR = 35.40dB, SSIM = 0.941), HDNet [6]
(PSNR = 34.95dB, SSIM = 0.948) and DGSMP [7] (PSNR = 33.26dB, SSIM = 0.915) for Scene1. Zoom in for better view.
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Figure 3. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method with 9stage (PSNR =
40.95dB, SSIM = 0.977), CST-L-Plus [9] (PSNR = 36.84dB, SSIM = 0.955), MST-L [3] (PSNR = 35.87dB, SSIM = 0.944), HDNet [6]
(PSNR = 32.52dB, SSIM = 0.953) and DGSMP [7] (PSNR = 32.09dB, SSIM = 0.898) for Scene2. Zoom in for better view.

.

4



Figure 4. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method with 9stage (PSNR =
43.25dB, SSIM = 0.979), CST-L-Plus [9] (PSNR = 38.16dB, SSIM = 0.962), MST-L [3] (PSNR = 36.51dB, SSIM = 0.953), HDNet [6]
(PSNR = 34.52dB, SSIM = 0.957) and DGSMP [7] (PSNR = 33.06dB, SSIM = 0.925) for Scene3. Zoom in for better view.
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Figure 5. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method with 9stage (PSNR =
47.83dB, SSIM = 0.990), CST-L-Plus [9] (PSNR = 42.44dB, SSIM = 0.975), MST-L [3] (PSNR = 42.27dB, SSIM = 0.973), HDNet [6]
(PSNR = 43.00dB, SSIM = 0.981) and DGSMP [7] (PSNR = 40.54dB, SSIM = 0.964) for Scene4. Zoom in for better view.
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Figure 6. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method with 9stage (PSNR =
37.11dB, SSIM = 0.976), CST-L-Plus [9] (PSNR = 33.25dB, SSIM = 0.955), MST-L [3] (PSNR = 32.77dB, SSIM = 0.947), HDNet [6]
(PSNR = 32.49dB, SSIM = 0.957) and DGSMP [7] (PSNR = 28.86dB, SSIM = 0.882) for Scene5. Zoom in for better view.
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Figure 7. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method with 9stage (PSNR =
37.47dB, SSIM = 0.975), CST-L-Plus [9] (PSNR = 35.72dB, SSIM = 0.963), MST-L [3] (PSNR = 34.80dB, SSIM = 0.955), HDNet [6]
(PSNR = 35.96dB, SSIM = 0.965) and DGSMP [7] (PSNR = 33.08dB, SSIM = 0.937) for Scene6. Zoom in for better view.
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Figure 8. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method with 9stage (PSNR =
38.58dB, SSIM = 0.969), CST-L-Plus [9] (PSNR = 34.86dB, SSIM = 0.944), MST-L [3] (PSNR = 33.66dB, SSIM = 0.925), HDNet [6]
(PSNR = 29.18dB, SSIM = 0.937) and DGSMP [7] (PSNR = 30.74dB, SSIM = 0.886) for Scene7. Zoom in for better view.
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Figure 9. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method with 9stage (PSNR =
35.50dB, SSIM = 0.970), CST-L-Plus [9] (PSNR = 34.34dB, SSIM = 0.961), MST-L [3] (PSNR = 32.67dB, SSIM = 0.948), HDNet [6]
(PSNR = 34.00dB, SSIM = 0.961) and DGSMP [7] (PSNR = 31.55dB, SSIM = 0.923) for Scene8. Zoom in for better view.
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Figure 10. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method with 9stage (PSNR =
41.83dB, SSIM = 0.978), CST-L-Plus [9] (PSNR = 36.51dB, SSIM = 0.957), MST-L [3] (PSNR = 35.39dB, SSIM = 0.949), HDNet [6]
(PSNR = 34.56dB, SSIM = 0.957) and DGSMP [7] (PSNR = 31.66dB, SSIM = 0.911) for Scene9. Zoom in for better view.
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Figure 11. Simulation: RGB image, measurement, ground truth and reconstructed results by the proposed method with 9stage (PSNR =
35.23dB, SSIM = 0.962), CST-L-Plus [9] (PSNR = 33.09dB, SSIM = 0.945), MST-L [3] (PSNR = 32.50dB, SSIM = 0.941), HDNet [6]
(PSNR = 32.22dB, SSIM = 0.950) and DGSMP [7] (PSNR = 31.44dB, SSIM = 0.925) for Scene10. Zoom in for better view.
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Figure 12. Real data: RGB image, measurement and reconstructed results by the proposed method with 3stage, MST [3], DeSCI [10],
GAP-TV [15] and TwIST [1] for Scene1. Zoom in for better view.
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Figure 13. Real data: RGB image, measurement and reconstructed results by the proposed method with 3stage, MST [3], DeSCI [10],
GAP-TV [15] and TwIST [1] for Scene2. Zoom in for better view.
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Figure 14. Real data: RGB image, measurement and reconstructed results by the proposed method with 3stage, MST [3], DeSCI [10],
GAP-TV [15] and TwIST [1] for Scene3. Zoom in for better view.
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Figure 15. Real data: RGB image, measurement and reconstructed results by the proposed method with 3stage, MST [3], DeSCI [10],
GAP-TV [15] and TwIST [1] for Scene4. Zoom in for better view.
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Figure 16. Real data: RGB image, measurement and reconstructed results by the proposed method with 3stage, MST [3], DeSCI [10],
GAP-TV [15] and TwIST [1] for Scene5. Zoom in for better view.
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