
Supplementary Material for “The Enemy of My Enemy is My Friend:
Exploring Inverse Adversaries for Improving Adversarial Training”

Junhao Dong1, Seyed-Mohsen Moosavi-Dezfooli2, Jianhuang Lai1,3,4 and Xiaohua Xie1,3,4

1School of Computer Science and Engineering, Sun Yat-Sen University, China
2Imperial College London, UK

3Guangdong Province Key Laboratory of Information Security Technology, China
4Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of Education, China

dongjh8@mail2.sysu.edu.cn, seyed.moosavi@imperial.ac.uk,

{stsljh, xiexiaoh6}@mail.sysu.edu.cn

In this supplementary material, we first present our ex-
perimental setup (see Section 1). Moreover, we give more
details about our inverse adversarial training (see Section 2),
including instance-wise inverse adversarial training, one-off
strategy, and how our method can be combined with single-
step adversarial training methods. We also provide visu-
alization results (see Section 3) and the analysis of hyper-
parameters (see Section 4).

1. Experimental Settings

In this section, we provide detailed experimental settings
of used databases and our method.

1.1. Datasets

We conduct all our experiments on CIFAR-10/100 [8]
and SVHN [11]. The CIFAR-10 dataset contains 60,000
color images with the size of 32 × 32 in 10 classes. The
CIFAR-100 dataset shares the same setting as CIFAR-10,
except it owns 100 classes consisting of 600 images each.
In CIFAR-10/CIFAR-100 dataset, 50,000 images are for
training, and 10,000 images are for testing the performance.
SVHN is a dataset of street view house numbers, which in-
cludes 73,257 examples for training and 26,032 examples
for evaluation. For training with additional data, we also in-
clude 1M synthetic images generated by the Denoising Dif-
fusion Probabilistic Model (DDPM) [6] for CIFAR-10/100
following the setting of [12, 13].

1.2. Implementation Details

Following the hyper-parameter settings from [2, 12], we
use Stochastic Gradient Descent (SGD) optimizer with Nes-
terov momentum factor of 0.9 [10] and cyclic learning rate
schedule [14] with the batch size of 128, the maximum
learning rate of 0.1, and a weight decay factor of 5× 10−4.

For training without extra data, our model is trained for 100
epochs for CIFAR-10/100 and 30 epochs for SVHN.

For training with synthetic DDPM-generated data [13]
on CIFAR-10/100, we train models for 400 CIFAR-10-
equivalent epochs (the same amount of training examples
as standard CIFAR-10 in an epoch) with the batch size of
512. The original-to-generated ratio (e.g., a ratio of 0.3
means that we include 7 synthetic images for every 3 orig-
inal images) is 0.3 for CIFAR-10 and 0.4 for CIFAR-100.
We also adopt the cyclic learning rate strategy with a max-
imum learning rate of 0.2. Following the training setup
from [12,13], we use SiLU activation function [5] with Pre-
activation ResNet-18 (PRN-18) [4] and Wide-ResNet-28-
10 (WRN-28-10) [17]. We further use model weight aver-
aging [7] with a decay factor of 0.995.

For generating adversarial examples during training, we
adopt the iterative Projected Gradient Descent (PGD) algo-
rithm [9] on the cross-entropy loss function for 10 steps
with the step size α = 2/255 for CIAFR-10/100 and
α = 1/255 for SVHN. We mainly consider the ℓ∞-norm
threat model with the maximum adversarial perturbation
ϵ = 8/255. We set the inverse perturbation radius as ϵ′ =
4/255. The number of iterations for instance-wise inverse
perturbation is 5 with the iteration step size of α′ = 2/255,
whilst we conduct single-step gradient descent on universal
inverse perturbation with the step size of α′ = 4/255. We
choose the trade-off factor λ = 3.5 for CIFAR10/100 and
λ = 3.0 for SVHN. The regularization hyper-parameter β
is set to 1.0. We pick the inverse momentum factor γ = 0.9
for our standard inverse adversarial training method except
for the one-off setting. We do not involve the inverse mo-
mentum when adopting the one-off strategy. The momen-
tum mechanism starts at epoch T = 75 when training for
100 epochs and starts at epoch T = 350 when training for
400 epochs. The one-off epoch choice is T ′ = 80 for 100

1



Algorithm 1 Inverse Adversarial Training (IAT)

Input: DNN classifier fθ; dataset D = {(x, y)} with C classes; batch size m; learning rate τ ; radius for adversaries ϵ
and inverse adversaries ϵ′; iteration times n and step size α′ for inverse adversary generation; weighting factors λ, β.

1: Randomly initialize the network parameter θ
2: while not at end of training do
3: for each mini-batch (x, y) = {(xj , yj)}mj=1 do
4: for j = 1, 2, . . . ,m do
5: Initialize Inverse adversarial perturbation zj ∼ 0.001 · N (0, 1)
6: x̂j ← PGDATTACK(xj , yj , fθ,LCE) ▷ Find PGD adversarial example
7: x̌j ← xj + zj
8: for t = 1, 2, . . . , n do
9: x̌j = ΠB(x,ϵ′)

(
x̌j − α′ · sign

(
∇x̌j
LInv (x̌j , y)

))
▷ Update instance-wise inverse adversaries

10: end for
11: end for
12: θ ← θ − τ · ∇θ

{∑
j LCE (fθ (x̂j) , yj) + λ · LKL (fθ (x̌j) ∥fθ (x̂j))

}
13: end for
14: end while
15: return Inverse adversarially trained model fθ.

training epochs and T ′ = 320 for 400 training epochs.

2. Details of Inverse Adversarial Training

2.1. Instance-wise Inverse Adversarial Training

We have introduced how to generate instance-wise in-
verse adversaries in the main paper. In this section, we
give more details about combining inverse adversarial ex-
amples with adversarial training. In general, we generate in-
verse adversarial perturbation for each natural example via
the PGD method [9] optimized on the inverse adversarial
loss. The instance-wise Inverse Adversarial Training (IAT)
is quite similar to Universal Inverse Adversarial Training
(UIAT) we have introduced in detail. We can easily ob-
tain IAT by replacing universal inverse adversaries with
instance-wise inverse adversaries. We provide the pseudo-
code of IAT in Algorithm 1.

2.2. One-off Strategy

In this section, we provide more details about the one-
off strategy and how it can be combined with our method.
The one-off strategy means generating inverse adversarial
examples for only one certain epoch T ′ instead of through-
out the whole training stage. During the standard inverse
adversarial training, we mainly optimize cross-entropy loss
of adversarial examples and Kullback–Leibler (KL) diver-
gence between inverse adversaries and adversarial exam-
ples. However, the one-off strategy mainly focuses on the
substitution of the inverse adversaries throughout the adver-
sarial training, which can reduce the computational over-
head effectively. The loss function for the One-Off version
of inverse adversarial training can be formulated as below:

LOO
IAT=LCE (fθ (x̂) , y)+λ · LKL

(
p
(t)
OO∥fθ (x̂)

)
, (1)

where x̂ is the adversarial example. p
(t)
OO denotes the one-

off output probability that mainly depends on the current
training epoch t, which can be obtained by:

p
(t)
OO =


fθ (x) , if t < T ′

fθ (x̌) , if t = T ′

p
(T ′)
OO , if t > T ′

(2)

where x̌ denotes the inverse adversarial example, and T ′ is
the only epoch for generating inverse adversarial examples.
Before epoch T ′, we replace inverse adversaries with nat-
ural examples during adversarial training, which is similar
to [15]. Particularly, we generate inverse adversarial exam-
ples and use them for distribution alignment during epoch
T ′. After epoch T ′, we use the output probability of inverse
adversaries at epoch T ′ instead of recomputing inverse ad-
versarial examples. The motivation is that the feature repre-
sentation tends to be stable at a later stage of training. Thus
we can consistently obtain the high-likelihood region with
the same inverse adversarial examples. Therefore, it is rea-
sonable to continue to use the previously computed inverse
adversaries to represent the high-likelihood region during
the current training epoch.

2.3. Single-step Adversarial Training

In this section, we give more details about how our
method can be combined with single-step adversarial train-
ing methods [1, 3, 16]. When using ℓ∞-norm threat model,
we can formalize the adversarial training [9] as the follow-
ing min-max optimization problem:



Airplane

Natural

Examples

66.23% 

confidence

Inverse

Adversaries

Inverse

Perturbations

Universal Inverse

Adversaries

Universal Inverse

Perturbations

74.91% 

confidence

68.59% 

confidence

Horse

90.96% 

confidence

97.70% 

confidence

96.18% 

confidence

Ship

88.09% 

confidence

94.05% 

confidence

93.20% 

confidence

Figure 1. Visualization of both inverse adversaries and class-specific universal inverse adversaries. Their corresponding inverse adversarial
perturbations are also presented. In addition, we present the prediction confidence of the ground-truth class.

0.0 0.5 1.0 2.0
82.0

82.5

83.0

83.5

84.0

84.5

85.0

85.5

86.0

N
at

ur
al

 A
cc

ur
ac

y 
(%

)

48.00

48.25

48.50

48.75

49.00

49.25

49.50

49.75

50.00

R
ob

us
t A

cc
ur

ac
y 

(%
)

(a)

0.0 0.3 0.5 0.7 0.9
82.0

82.5

83.0

83.5

84.0

84.5

85.0

85.5

86.0

N
at

ur
al

 A
cc

ur
ac

y 
(%

)

48.00

48.25

48.50

48.75

49.00

49.25

49.50

49.75

50.00

R
ob

us
t A

cc
ur

ac
y 

(%
)

(b)

15 30 45 60 75 90
T

82.0

82.5

83.0

83.5

84.0

84.5

85.0

85.5

86.0

N
at

ur
al

 A
cc

ur
ac

y 
(%

)

48.00

48.25

48.50

48.75

49.00

49.25

49.50

49.75

50.00

R
ob

us
t A

cc
ur

ac
y 

(%
)

(c)

40 50 60 70 80 90
T ′

82.0

82.5

83.0

83.5

84.0

84.5

85.0

85.5

86.0

N
at

ur
al

 A
cc

ur
ac

y 
(%

)

48.00

48.25

48.50

48.75

49.00

49.25

49.50

49.75

50.00

R
ob

us
t A

cc
ur

ac
y 

(%
)

(d)

Figure 2. Hyper-parameter sensitivity of our UIAT method on nat-
ural accuracy and (Auto-Attack) robust accuracy using ResNet-18
on CIFAR-10. We report the hyper-parameters adjustment of β in
(a) and γ in (b). The tuning for the starting epoch of momentum
T is in (c), and the one-off epoch T ′ is in (d)

min
θ

E(x,y)∼D

[
max

∥δ∥∞<ϵ
LCE

(
fθ

(
x+ δSGL

)
, y
)]
, (3)

where LCE is the cross-entropy loss, and δ is the adver-
sarial perturbation under the ℓ∞-norm bound ϵ. The in-
ner maximization problem of adversarial training can be
viewed as searching for the most harmful adversarial ex-
amples x̂SGL = x + δSGL. However, the iterative so-
lution for the inner maximization problem, i.e., the PGD
method, suffers from a high computational cost. Notably,
most single-step adversarial training methods approximate

the worst-case perturbation by solving the inner maximiza-
tion in Equation (3) with the following form:

δSGL = ψ
(
η + α · sign

(
∇xLCE(fθ(x+ η), y)

))
, (4)

where ψ is a projection operator onto the ℓ∞-norm ball and
η is drawn from a certain distribution Ω that can be typ-
ically a uniform distribution between [−ϵ, ϵ]. When com-
bining our UIAT method with these single-step adversarial
training methods, we do not modify the inner maximiza-
tion to obtain adversarial perturbations δSGL. We primarily
focus on outer minimization, where we add an additional
KL divergence term between universal inverse adversaries
x̌ and adversarial examples x̂SGL. Hence, a general form of
the loss function for single-step adversarial training (outer
minimization) can be defined as below:

LSGL
IAT = LCE (fθ (x̂) , y) + λ · LKL

(
fθ (x̌) ∥fθ

(
x̂SGL)) ,

(5)
where x̌ denotes the universal inverse adversarial example
that is also obtained by single-step gradient descent on the
inverse adversarial loss. Note that we do not apply the
feature-level regularization during inverse adversary gener-
ation for efficiency, which means we only use the cross-
entropy loss for inverse adversary generation. In general,
we can efficiently combine our method with single-step ad-
versarial training by paying only three additional forward
propagation times and one backward propagation time for
each batch of data.

3. Visualization
We visualize both the (universal) inverse adversarial ex-

amples and their inverse perturbations in Figure 1. It can
be seen that class-specific universal inverse adversaries can



obtain a similar inverse effect (improving predicting con-
fidence on the correct category) to the original inverse ad-
versaries. Note that the standard inverse adversarial per-
turbation is specific to a certain example, while the univer-
sal inverse perturbation can apply to examples from a given
category. These inverse examples are also visually indistin-
guishable from natural examples.

4. Hyper-parameter Analysis
To comprehensively analyze the contribution of each

component, we report natural accuracy and robust accuracy
when tuning component weights, as shown in Figure 2. It
can be seen that enlarging the momentum factor γ can fur-
ther improve the adversarially robust accuracy. In addition,
choosing the start epoch T for enabling inverse adversarial
momentum during the second half of training can benefit
both natural accuracy and adversarial robustness. In par-
ticular, we can observe that the choice for the one-off epoch
T ′ is essential, and there exists a huge performance variance
when tuning this hyper-parameter. Similar to the choice for
the start epoch for momentum, it is beneficial to adopt the
one-off output probability of inverse adversaries during the
second half of training.

References
[1] Maksym Andriushchenko and Nicolas Flammarion. Under-

standing and improving fast adversarial training. Advances
in Neural Information Processing Systems, 33:16048–16059,
2020. 2

[2] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian
Zhao, Jian Zhang, Luigi Nardi, Peter Bailis, Kunle Oluko-
tun, Chris Ré, and Matei Zaharia. Dawnbench: An end-to-
end deep learning benchmark and competition. NIPS ML
Systems Workshop, 2017. 1

[3] Pau de Jorge, Adel Bibi, Riccardo Volpi, Amartya Sanyal,
Philip HS Torr, Grégory Rogez, and Puneet K Dokania.
Make some noise: Reliable and efficient single-step adver-
sarial training. arXiv preprint arXiv:2202.01181, 2022. 2

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Identity mappings in deep residual networks. In European
conference on computer vision, pages 630–645. Springer,
2016. 1

[5] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 1

[6] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 1

[7] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry P. Vetrov, and Andrew Gordon Wilson. Averaging
weights leads to wider optima and better generalization. In
Proceedings of the Thirty-Fourth Conference on Uncertainty
in Artificial Intelligence, UAI, pages 876–885. AUAI Press,
2018. 1

[8] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 1

[9] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In 6th International
Conference on Learning Representations, ICLR 2018, 2018.
1, 2

[10] Yurii Nesterov. A method for solving the convex program-
ming problem with convergence rate o(1/k2). Proceedings
of the USSR Academy of Sciences, 269:543–547, 1983. 1

[11] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural
images with unsupervised feature learning. 2011. 1

[12] Rahul Rade and Seyed-Mohsen Moosavi-Dezfooli. Reduc-
ing excessive margin to achieve a better accuracy vs. robust-
ness trade-off. In The Tenth International Conference on
Learning Representations, ICLR, 2022. 1

[13] Sylvestre-Alvise Rebuffi, Sven Gowal, Dan A Calian, Flo-
rian Stimberg, Olivia Wiles, and Timothy Mann. Fixing
data augmentation to improve adversarial robustness. arXiv
preprint arXiv:2103.01946, 2021. 1

[14] Leslie N. Smith and Nicholay Topin. Super-convergence:
very fast training of neural networks using large learn-
ing rates. In Artificial Intelligence and Machine Learning
for Multi-Domain Operations Applications, page 1100612.
SPIE, 2019. 1

[15] Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun
Ma, and Quanquan Gu. Improving adversarial robustness
requires revisiting misclassified examples. In International
Conference on Learning Representations, 2019. 2

[16] Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better
than free: Revisiting adversarial training. In 8th Interna-
tional Conference on Learning Representations, ICLR, 2020.
2

[17] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In Richard C. Wilson, Edwin R. Hancock, and
William A. P. Smith, editors, Proceedings of the British Ma-
chine Vision Conference 2016, BMVC, 2016. 1


	. Experimental Settings
	. Datasets
	. Implementation Details

	. Details of Inverse Adversarial Training
	. Instance-wise Inverse Adversarial Training
	. One-off Strategy
	. Single-step Adversarial Training

	. Visualization
	. Hyper-parameter Analysis

