Weakly Supervised Video Representation Learning
with Unaligned Text for Sequential Videos

Supplementary Material

A. Extra Experiment Studies

In this section, we present additional ablation studies
about our method, including the effects of batch size, the
number of clips sampled per video, the approach of extract-
ing paragraph-level language representation, and sequence
align loss.

A.1. Implementation Details

We implement our method with PyTorch. The vision
backbone we employ is the pre-trained CLIP vision encoder
based on ViT-B [I]. And the model is initialized adopt-
ing Kaiming and Xavier uniform initialization for different
layers [4, 5]. In our module, the parameter of the vision
backbone is unfrozen and finetuned when training. On the
other hand, the language backbone is the pre-trained CLIP
text encoder whose parameter is frozen totally. We split the
raw video into 16 clips for a sequential video and randomly
sample one raw frame from each clip in the training and
uniformly sample frames in inference. The projection layer
adopts a fully connected layer. The hidden layer dimen-
sion of transformer encoder [1] is 1024, and the depth is 2.
The dimension of the video representations and paragraph
representations is 512. The A; in our model is equal to 1.
The experiments are conducted on 4 NVIDIA 2080Ti GPUs
with batch size 8. We adopt an AdamW optimizer [ 10] with
cosine annealing learning rate scheduler with a base learn-
ing rate of 5 x 10~4, and weight decay 0.01. More imple-
mentation details should be seen in the supplementary ma-
terials. And expect the experiment of sequence align loss to
be conducted on the supervised sequence verification task,
other experiments are conducted on the weakly supervised
sequence verification task. We conduct all experiments on
CSV dataset.

A.2. Batch size

To adapt to the change in batch size, we increase or de-
crease the learning rate exponentially. As Tab. 1 shown,
our method achieves the best performance when the batch
size is equal to 16. The larger the batch size, the more
likely multiple videos of the same task will appear in the
same mini-batch. Due to the limitation of GPU memory,
the largest batch size can be set as 8 if we unfreeze the vi-
sion backbone.

A.3. Sampling

While changing the frames of sampling per video, the
training time is doubled with the increasing number of

Method | Batch size | Frames | CSV
4 16 65.94

8 16 67.46

Ours 16 16 69.42
24 16 69.21

32 16 69.16

Table 1. Ablation studies of batch size on our proposed method

frames. In this ablation study, all models have been training
no more than 100 epochs or 12 hours on two GPUs due to
the limitation of computing resources.

As Tab. 2 shown, when frames are set to 16, our model
achieves the best performance. It is worth noting that, with
more training steps (about twice the training time), the per-
formance of 32 frames will increase to 68.20. However, we
choose 16 as the default frame to balance batch size, num-
ber of frames, and training cost, we choose 16 as the default
frame.

The significant reason for choosing sampling frames
rather than video clips is the limitation of computational re-
sources. Fine-tuning the full pre-trained backbone, such as
VideoCLIP [9], is expensive. Similarly, to balance the effi-
ciency of the network and fairly compare our method with
CAT [7], we choose 16 frames as the same as CAT.

Method | Batch size | Frames | CSV
8 8 58.43

8 16 67.46

Ours 8 32 | 65.64
8 48 64.40

Table 2. Ablation studies of the number of frames.

A 4. Paragraph feature

We design two ways to extract the feature of the para-
graph. The one is concatenating all sentences into a para-
graph description. Then we can obtain the paragraph-level
representation by feeding the paragraph description into the
language encoder. The other method is that feed individ-
ual procedure texts into the frozen language encoder to pro-
duce sentence representations and then obtain a paragraph-
level representation by temporal mean pooling. The results
shown in Tab. 3 illustrate that the method based on concate-
nation achieves better performance.



Method | Paragraph feature | CSV
pooling 67.07

concat 67.46

Ours

Table 3. Ablation studies of the ways to extract paragraph features
on our method.

A.S. Sequence alignment loss

For a fair comparison, some adjustments have been made
to the architecture of our model on the supervised sequence
verification task. Specifically, following [7], we apply the
video sequence alignment mechanism to our model. More-
over, we also conduct experiments to investigate the effec-
tiveness of using sequence alignment loss. We change the
sequence align loss position to the last of the network. The
results shown in Tab. 4 illustrate that sequence alignment
loss Lgeq could restrict the model to learning a better repre-
sentation.

Method | Leq | CSV
X | 8447
Ours |/ | 84.69

Table 4. Ablation studies of the sequence alignment loss on our
method.

B. Gumbel-Softmax with Viterbi

Due to the sum of the probabilities of each row cannot be
greater than one and each probability value in a row should
be the same, we simply set the value to ﬁ As Eq. (1)
shown, we set each element value in the upper diagonal ma-
trix to % and others to zero to keep the path of probability

will be a one-way path.

1 L1
N N
A= o (1
1
0 NI NxN
where A represents the Transition matrix of Viterbi algo-
rithm [3].

C. TSM module

Following [2], we add the Temporal Similarity Matrix
(TSM) module with residual connection to our vision mod-
ule. In this ablation study, we only use the task classifi-
cation loss L instead of coarse-grained 10sS Lcgarse and
fine-grained loss Lgpe. As Tab. 5 shown, we verify different
similarity distances of TSM and residual connection types.
And the experiments indicate that the TSM module with
residual connection will improve the model performance.

However, as Tab. 6 shows, while we apply the TSM mod-
ule to our method and train the model under weak supervi-
sion, the performance of the model degrades. It is reason-
able that the model with the TSM module is not effective
for language-video alignment tasks.

Method Dist Residual | CSV
X X 77.35
L2 add 77.42

CLIP [8]+TE [1]+MLP | L2 concat | 78.22
Attn add 76.89

Attn concat 77.71

Table 5. Ablation studies of the different kinds of TSM module on
the baseline.

Method | Lfine | Leoarse | TSM | CSV
v v X 79.80
Ours v v v 76.00

Table 6. Ablation studies of the TSM on our proposed method.

D. Downstream tasks
D.1. Text-to-Video Matching

We validate the performance of the video-language rep-
resentations on text-to-video matching, which aims to find
the correct video corresponding to a sequence of texts from
a series of videos. Specifically, we train our model on the
CSV dataset under weak supervision and test it on our pro-
posed benchmark about text-to-video matching. We calcu-
late the similarity between each video representation V; and
paragraph representation L:

d = dis(L,V;) )

where dis(.,.) represents the normalized Euclidean dis-
tance. And V; represents i, (¢ € [0, . .., 4]) video represen-
tation. At last, we select the text-video pair with the max
similarity.

CSV-Matching. To better evaluate the text-to-video match-
ing, we rearrange the test set of CSV and propose a new
scripted benchmark named CSV-Matching. It has 800 text-
video pairs. Each text-video pair is composed of one se-
quence of text descriptions of procedures and five videos.
All of the videos describe the same task but hold different
procedures. There is only one correct video matching the
text descriptions in each pair. CSV-test dataset contains 5
tasks and each task has 5 kinds of different procedures. We
random select one kind of video from each procedure to
compose one pairs. The benchmark and split script will be
available.



Method Backbone Loss Classification(Acc)
CAT [7] ResNet-50 [2] CLS, SEQ 61.08
CLIP [8]+TE+MLP CLIP-ViT CLS, SEQ 63.24
Ours(CLS) CLIP-ViT CLS, SEQ, Multi-grained loss 69.57
Table 7. Results of video classification on CSV.
Weakly supervised (w/o CLS) Supervised (w CLS)
Method Backbone Def.  No Rep. Rep. Def. NoRep. Rep.
CAT [7] ResNet50 [6] | 47.70 57.82 49.99 51.13 63.25 45.96
CLIP [8]+TE+MLP CLIP-ViT 50.83 65.28 53.73 48.50 65.21 51.25
Ours CLIP-ViT 52.55 68.98 56.16 59.57 77.78 54.95

Table 8. Results of different methods on re-divided COIN-SV.

D.2. Video Classification

To demonstrate our method’s transfer ability, we eval-
uate models in the downstream video classification task.
We re-divided the CSV dataset for video classification task.
The train set contains 689 videos and test set contains 185
videos. On the re-divided CSV test dataset (CSV-CLS),
we evaluate representations of models with linear probing,
which were pre-trained under weak supervision. As Tab. 7
shown, our method achieves better performance in the video
classification task. The benchmark and split script will be
available.

E. Limitations

While our method performs well on the major part of the
data, there still are some failure cases. In realistic sequential
videos, sub-actions are often repeated. In that case, there are
multiple sentences with high similarity to a frame. It could
mislead the model to generate biased pseudo-labels, which
will lead to the deterioration of performance. For example,
the occurrence of a large number of repetitive actions repet-
itive action might hidden achieving further performance.

The intuition of our fine-grained contrastive loss comes
from a basic idea: if the s; is the corresponding sentence
for frame h;, the corresponding sentence for frame h; 1 is
never before the s; in sequence. Due to a large number
of repetitive actions, it might be difficult to achieve further
performance. However, this method is still promising. As
Tab. 8 shown, we have re-divided the COIN-SV test dataset
based on whether existing repetitive actions in videos or
not, which are COIN-SV-Rep (675 video pairs) and COIN-
SV-NoRep (325 video pairs). In the original COIN-SV test
dataset, there are 1000 video pairs for sequential video ver-
ification, built by 328 videos containing repetitive actions
and 123 videos that do not. The results show that although
the occurrence of repetitive actions will cause the deteriora-
tion of performance, our method can still achieve better re-
sults than other baselines. Moreover, the results conducted

by our method may reflect the bias from the dataset.
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