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A. Implementation Details
A.1. Low-rank Backbone

To improve the efficiency and alleviate the learning difficulty, we adopt the backbone with four layers of low-rank 3D
convolution, where each layer is implemented by sequential 1 × 1 × 3, 1 × 3 × 1, and 3 × 1 × 1 convolutions as shown
in Fig. 1. Low-rank convolution could efficiently save 2/3 parameters while reducing the redundancy of 3D convolution. One
temporal downsampling layer with kernel size of 3 and one spatial downsampling layer with kernel size of 2 are performed
after the first layer and the second layer, respectively.
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Figure 1. Illustration of low-rank 3D convolution, which aims to improve the efficiency and reduce the redundancy of 3D convolution.

A.2. More Details

The data pre-processing method is from [1]. The input resolution of all datasets is 64 × 44, and we report extra results
under the resolution of 128 × 88 on Gait3D. The margin of triplet loss is set to 0.2. The frame is set to 30 at the training
stage, while it is unfixed at the inference stage. All experiments are implemented by Pytorch with Nvidia 3090 GPUs.

B. Details of DCDC
B.1. Derivative of Schatten 1-norm.

Schatten 1-norm ||W||S1 is the convex approximation to rank function Rank(W) and is differentiable. First, we decom-
pose W as UΣVT based on singular value decomposition (SVD) assumption. Then, ∂W could be obtained as follows:

∂W = (∂U)ΣVT +U(∂Σ)VT +UΣ(∂VT ). (1)

Next, ∂Σ should be figured out, and it could be represented as:

∂Σ = UT∂(W)V −UT (∂U)Σ−Σ(∂VT )V = UT (∂W)V, (2)
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where (−UT (∂U)Σ−Σ(∂VT)V) = 0 .Thus, the process of the derivative on || · ||S1 could be accomplished as follows:

∂||W||S1

∂W
=

tr(∂Σ)

∂W
=

tr(UT (∂W)V)

∂W
=

tr(VUT (∂W))

∂W
= (VUT )T = UVT . (3)

B.2. Complexity Analysis of DCDC

We omit the kernel size for simplicity. For parameter complexity, static convolution and dynamic convolution require
C2 and KC2(K ≥ 4), respectively. By contrast, DCDC requires sample-agnostic kernel W0 and sample-adaptive kernel
PΦ(X)QT with C2 and (2CL+ (C + L2)Cr ) parameters, respectively. P/Q is implemented by convolutions and Φ(X) is
implemented by MLP. The parameters of DCDC is summarized as:

ParameterDCDC = C2 + 2CL+ (C + L2)
C

r
< (1 +

2

r
)C2 + 2C

√
C(L2 < C). (4)

Therefore, DCDC is more parameter-efficient than dynamic convolution while using similar computation costs.

C. Detailed Results
C.1. Results of Each View on CASIA-B.

The performance under NM, BG, CL, and Mean condition is shown in the main manuscript. Further, the detailed cross-
view performance is shown in Tab. 1. GaitGCI efficiently outperforms state-of-the-art performance at almost all viewpoints,
which indicates the superior cross-view retrieval ability of GaitGCI.

Table 1. Averaged rank-1 accuracy on CASIA-B without identical views cases, including GaitSet [1], GaitPart [2], MT3D [5], CSTL [3],
3DLocal [4], and GaitGL [6].

Gallery NM #1-4 0◦-180◦
Mean

Probe Method 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM

GaitSet 90.8 97.9 99.4 96.9 93.6 91.7 95.0 97.8 98.9 96.8 85.8 95.0
GaitPart 94.1 98.6 99.3 98.5 94.0 92.3 95.9 98.4 99.2 97.8 90.4 96.2
MT3D 95.7 98.2 99.0 97.5 95.1 93.9 96.1 98.6 99.2 98.2 92.0 96.7
CSTL 97.2 99.0 99.1 98.0 96.3 95.6 97.1 98.7 99.2 98.9 96.7 97.9

3DLocal 96.0 99.0 99.5 98.9 97.1 94.2 96.3 99.0 98.8 98.5 95.2 97.5
GaitGL 96.0 98.3 99.0 97.9 96.9 95.4 97.0 98.9 99.3 98.8 94.0 97.4

Ours 97.3 98.6 99.2 98.2 97.3 95.7 97.1 99.2 99.0 99.1 96.8 97.9

BG

GaitSet 83.8 91.2 91.8 88.8 83.3 81.0 84.1 90.0 92.2 94.4 79.0 87.2
GaitPart 89.1 94.8 96.7 95.1 88.3 84.9 89.0 93.5 96.1 93.8 85.8 91.5
MT3D 91.0 95.4 97.5 94.2 92.3 86.9 91.2 95.6 97.3 96.4 86.6 93.0
CSTL 91.7 96.5 97.0 95.4 90.9 88.0 91.5 95.8 97.0 95.5 90.3 93.6

3DLocal 92.9 95.9 97.8 96.2 93.0 87.8 92.7 96.3 97.9 98.0 88.5 94.3
GaitGL 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5

Ours 93.2 96.8 97.6 96.2 93.9 90.5 93.7 96.8 98.3 97.2 91.7 95.0

CL

GaitSet 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4
GaitPart 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7
MT3D 76.0 87.6 89.8 85.0 81.2 75.7 81.0 84.5 85.4 82.2 68.1 81.5
CSTL 78.1 89.4 91.6 86.6 82.1 79.9 81.8 86.3 88.7 86.6 75.3 84.2

3DLocal 78.2 90.2 92.0 87.1 83.0 76.8 83.1 86.6 86.8 84.1 70.9 83.7
GaitGL 76.6 90.0 90.3 87.1 84.5 79.0 84.1 87.0 87.3 84.4 69.5 83.6

Ours 81.1 91.3 93.2 90.4 85.7 80.6 87.1 88.3 89.3 87.3 75.5 86.4

C.2. Results on GREW Competition.

The screenshot of the results on GREW competition is shown in Fig. 2. GaitGCI efficiently achieves 3th in GREW
competition only using silhouette, which indicates the necessity and effectiveness of alleviating the confounders for practical
application.



Figure 2. The screenshots of the results on GREW competition, where proposed GaitGCI achieves 3th among these methods.

D. Ethical Statements
In our research, we pay great attention to bio-information security and ethics. We should use gait recognition technology

to affect social development and human happiness positively.
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