
Multiplicative Fourier Level of Detail
Supplemental Material

Yishun Dou2 Zhong Zheng2 Qiaoqiao Jin1 Bingbing Ni1,2

1Shanghai Jiao Tong University, Shanghai 200240, China 2 Huawei
yishun.dou@gmail.com nibingbing@sjtu.edu.cn

1. Supplemental Derivations
1.1. Deriving the Formulation of MFLOD

Lemma 1 The product of two sines can be transformed to the sum of two sines:

sin(τ1z1 + ϕ1) ◦ sin(τ2z2 + ϕ2) =
1

2
[sin(τ1z1 + τ2z2 + ϕ1 + ϕ2 −

π

2
) + sin(τ1z1 − τ2z2 + ϕ1 − ϕ2 +

π

2
)]. (1)

Theorem 2 The entire function of MFLOD at level ` can be characterized as:

N`
sine−1∑
j=0

ᾱj sin(ω̄j1z1 + ω̄j2z2 + · · ·+ ω̄j`z` + φ̄j), (2)

where the coefficients ᾱj , ω̄j and φ̄j are determined by the parameters of filters and network.

Proof. Consider the first level ` = 1, the intermediate output t1 is given as

t1 = sin(ω1z1 + φ1). (3)

This expression is a d dimensional vector. Although there is no intermediate output layer at first level in our architecture, it
still conforms to the form of Eq. (2).

Consider the MFLOD at second level ` = 2, the intermediate output t2 is given as

t2 = sin(ω2z2 + φ2) ◦ [W 2 sin(ω1z1 + φ1) + b2] (4)
= sin(ω2z2 + φ2) ◦ [W 2 sin(ω1z1 + φ1)] + sin(ω2z2 + φ2) ◦ b2, (5)

where

sin(ω2z2 + φ2) ◦ [W 2 sin(ω1z1 + φ1)]

=


sin(ω

(1)
2 z2 + φ

(1)
2 )

...
sin(ω

(d)
2 z2 + φ

(d)
2 )

 ◦

W

(1,1)
2 sin(ω

(1)
2 z1 + φ

(1)
1 ) + · · ·+W

(1,d)
2 sin(ω

(d)
2 z1 + φ

(d)
1 )

...
W

(d,1)
2 sin(ω

(1)
2 z1 + φ

(1)
1 ) + · · ·+W

(d,d)
2 sin(ω

(d)
2 z1 + φ

(d)
1 )

 . (6)

Since the elementwise multiplication between each row in above expression results in a sum of two sines (Lemma1), it
results in a vector containing 2d2 sines, each of which consists a linear combination of modulated z1 and z2. In addition to

1



the bias term with d sines, the intermediate output t2 can be expressed as

t2 =

2d2−1∑
j=0

ᾱj sin(ω̄j1z1 + ω̄j2z2 + φ̄j) +

2d2+d−1∑
j=2d2

ᾱj sin(ω̄j2z2 + φ̄j)

=

2d2+d−1∑
j=0

ᾱj sin(ω̄j1z1 + ω̄j2z2 + φ̄j). (7)

Now, assume the MFLOD at `th level. sin(ω`z` + φ`) would be elementwise multiplied with all previous sine terms.
Then we have

t` =

2dN`−1
sine −1∑
j=0

ᾱj sin(ω̄j1z1 + ω̄j2z2 + · · ·+ ω̄j`z` + φ̄j) +

2dN`−1
sine +d−1∑

j=2dN`−1
sine

ᾱj sin(ω̄j`z` + φ̄j)

=

N`
sine−1∑
j=0

ᾱj sin(ω̄j1z1 + ω̄j2z2 + · · ·+ ω̄j`z` + φ̄j), (8)

which is the original result, completing the proof. (See Lindell et al. [4] for the proof of the number of sines N `
sine.)

1.2. Initialization and Distribution of Activations

We initialize the feature-volume entries using the uniform distribution U(−a, a), and therefore the variance is a/
√

3. Then
the distribution after normalization is U(−

√
3,
√

3) at initialization.

Theorem 3 Let ω ∈ Rd×m, z ∈ Rm, and φ ∈ Rd be independent random variables sampled from continuous uniform
distributions as

ω ∼ U(−B,B) (9)

z ∼ U(−
√

3,
√

3) (10)
φ ∼ U(−π, π) (11)

where B >> π. Then letX = ωz + φ. When m = 1, the probability density function fX(x) ofX is approximately

fX(x) ≈ 1

2
√

3B
log(

B

min(|x/
√

3|, B)
). (12)

As m increases, fX(x) approaches the Gaussian distribution according to the central limit theorem.

(See Lindell et al. [4] for the proof of Eq. (12).)

2. Neural Tangent Kernel for Hybrid Models
We compute the neural tangent kernel (NTK) [2] using the Jacobian contraction. For the global implicit neural network

such as SIREN [7] and FFN [8], the NTK for two data points x1 and x2 is defined as the matrix product between the Jacobian
of the model evaluated at x1 and x2:

Θf
θ (x1,x2) = [∂f(θ,x1)/∂θ] [∂f(θ,x2)/∂θ]T , (13)

where [∂f(θ, ·)/∂θ] is a neural network Jacobian. Base on the fact that the Jacobian is with respect to the neural network
parameter according to the NTK theory [2], and that the parametric feature-volume that encodes the queried position into
feature vectors is independent of the neural network parameter, the feature-volume does not need to be comprised in the
full Jacobian. Let z1 and z2 be the encoded/queried features for the input positions x1 and x2, we can simply compute the
gradients with respect to the z1 and z2:

Θf
θ (x1,x2;Z) = [∂f(θ,z1)/∂θ] [∂f(θ,z2)/∂θ]T , (14)

whereZ is the parametric feature-volume. It’s worth noting that MFLOD includes learnable sinusoidal filters θfilter in addition
to the linear layers θnet, and thus in Eq. (14) θ = θfilter + θnet. In order to compute the NTK efficiently, we reimplement the
MFLOD in PyTorch and use the functorch [1] which implements the fast finite width NTK [6].



3. Additional Implementation Details
We jointly train the feature-volume entries, the sinusoidal filters, and the neural network weights by applying Adam [3],

where we set β1 = 0.9, β2 = 0.99, ε = 10−15 following [5]. To keep the learnable filter ω and φ distribute around the
initialization, we apply a small learning rate to them. The hyperparameters bandwidth B` are set empirically. For example,
given a LOD with maximum level L = 5, we set B1 = B2 = B/8, B3 = B4 = B5 = B/4 such that

∑
`B` = B, where

B is the maximum bandwidth. The setting of LOD with L = 4 and L = 6 can be simply extended from that of L = 5.
For image fitting and NeRF, we follow BACON [4] to set the maximum bandwidth B; for 3D shape representation, we use a
fixed value (the same with that used for dragon in BACON) for all shapes since we found MFLOD is not as sensitive to B as
BACON. After training, we found that the filters are distributed around the initialization, thus we can assume that the trained
MFLOD has the similar bandlimited property to that at initialization. Table 1a shows comparative results on the effects of the
proposed initialization and bandwidth limitation. Additionally, how the dimensions of Fourier space affect the final results is
shown in Tab. 1b.

MFLOD no W` no ω`, φ` no bandlimit

ShapeNet-200 (IoU) 94.3 93.2 88.9 94.0
NeRF (PSNR) 33.91 33.23 29.62 33.64

(a) From left to right: (1) MFLOD. (2) We replace the initialization
distribution of linear layers W` with xavier uniform. (3) We replace
the initialization distribution of filters ω`, φ` with xavier uniform. (4)
All levels have the same bandwidth.

d = 16 d = 32 (default) d = 64 d = 128

ShapeNet-200 (IoU) 92.3 94.3 94.5 94.4
NeRF (PSNR) 30.87 33.91 34.01 34.06

(b) The results with different Random Fourier Features (RFF) dimen-
sion d. We choose d=32 to maximize the quality-cost tradeoff.

Table 1. Ablation studies on the proposed initialization scheme, the bandlimited initialization (a), and the Random Fourier Features (RFF)
dimension d (b). We use the results on ShapeNet-200(IoU) and NeRF(PSNR) to demonstrate the effect of different design choices.

References
[1] Richard Zou Horace He. functorch: Jax-like composable function transforms for pytorch. https://github.com/pytorch/

functorch, 2021. 2
[2] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in neural networks.

Advances in neural information processing systems, 31, 2018. 2
[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 3
[4] David B Lindell, Dave Van Veen, Jeong Joon Park, and Gordon Wetzstein. Bacon: Band-limited coordinate networks for multiscale

scene representation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16252–16262,
2022. 2, 3

[5] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives with a multiresolution hash
encoding. arXiv preprint arXiv:2201.05989, 2022. 3

[6] Roman Novak, Jascha Sohl-Dickstein, and Samuel S Schoenholz. Fast finite width neural tangent kernel. In International Conference
on Machine Learning, pages 17018–17044. PMLR, 2022. 2

[7] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural representations with
periodic activation functions. Advances in Neural Information Processing Systems, 33:7462–7473, 2020. 2

[8] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi,
Jonathan Barron, and Ren Ng. Fourier features let networks learn high frequency functions in low dimensional domains. Advances in
Neural Information Processing Systems, 33:7537–7547, 2020. 2

https://github.com/pytorch/functorch
https://github.com/pytorch/functorch

	. Supplemental Derivations
	. Deriving the Formulation of MFLOD
	. Initialization and Distribution of Activations

	. Neural Tangent Kernel for Hybrid Models
	. Additional Implementation Details

