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1. Rule-Based Negative Generation

In this section we describe in detail the process of the
Rule-Based negative generation discussed in Section 3.1.1
of the main paper. The Rule-Based method is a simple yet
effective method for generating negative examples of a spe-
cific SVLC type. We do this by first collecting a list of all
words related to the desired SVLC type, this can be done by
a simple internet search. For every sentence in our dataset
we can compare the words in the sentence with the list. If
the sentence contains a word from the list we randomly re-
place it with a different word from the same list.

Algorithm 1 A pseudo-code for generating Rule-Based
negative examples

1: Let L be a list of words
2: Let T a dataset of sentences
3: for all t ∈ T do
4: Let W be all words in t
5: for all w ∈ t do
6: if w ∈ L then
7: Sample w′ from L
8: Replace w with w′ in t
9: break # we replace only a single word

10: end if
11: end for
12: end for

For example, when creating the rule-based negatives for
colors we collected the list: teal, brown, green, black, silver,
white, yellow, purple, gray, blue, orange, red, blond, con-
crete, cream, beige, tan, pink, maroon, olive, violet, char-
coal, bronze, gold, navy, coral, burgundy, mauve, peach,
rust, cyan, clay, ruby, and amber. Then applying the RB-
negatives algorithm on a given sentence “A blue car on the
road” could randomly change the color blue to beige to
get: “A beige car on the road”. The pseudo-code for RB-
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negatives is described in Algorithm 1. Similarly, we have
RB-negatives generation set-up for several SVLCs, namely:
colors, materials, states, sizes, and actions.

2. LLM-Based Negative generation

Algorithm 2 The pseudo-code for generating LLM-based
negative examples

1: Let T be a dataset of sentences
2: for all t ∈ T do
3: Parse t using spacy
4: Randomly choose a part of the sentence (POSTAG)
5: Randomly choose word w ∈ t that has the chosen

POSTAG
6: Replace w with <MASK> token in t
7: W ′ ← unmask using DistilRoBERTa
8: Remove w from W ′

9: Randomly select w′ from W ′

10: Replace w with w′ in t
11: end for

As opposed to the RB negative generation (SupSec 1),
the LLM-based negative generation does not require a hu-
man definition of the set of valid negatives. This method,
introduced in Section 3.1.2 of the main paper, can be broken
into three steps using two components of language model-
ing. First, we extract the linguistic parts of the sentence
such as nouns, adjectives, verbs, etc. For this step, we used
the spacy [2] ”en-core-web-sm” python package. Then we
randomly select which part to change and randomly choose
a word of that category. We replace the selected word using
Distil-Roberta [1, 5, 10] mask-filling capabilities. We re-
place the selected word with the masking token <MASK>
and input the new sentence to the Distil-Roberta model
which outputs several candidates for valid words. We se-
lect one word from the list, filtering out the original word.
For example, the sentence: “Two kids playing in the park”
was parsed and the verb “playing” was randomly selected.
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We mask out this word to get: “Two kids <MASK> in the
park”. The model then predicts several valid words: sit-
ting, playing, eating, drawing, running. We randomly select
one of these possibilities while excluding the original word
“playing” to get the negative caption: “Two kids eating in
the park”. The pseudo-code for LLM-based negatives gen-
eration is described in Algorithm 2.

3. Text Analogies via LLM Prompting
This method, as discussed in Section 3.1.3 of the main

paper, aims to generate a semantically similar sentence with
different wording than the original sentence. When gen-
erating negative examples (Sections 1,2) the goal was to
make minimal changes in the original sentence while sig-
nificantly changing the meaning. However, in this case we
require the exact opposite, i.e. major changes in the sen-
tence while still keeping the same semantic meaning. We
generate these sentences using BLOOM [6]. We prompt
the model with the following caption: “a woman standing
left to a sitting cat is semantic similar to a cat standing right
to a woman. a baby crying to the right of a box is semantic
similar to a box placed to the left of a crying baby. a man
sitting to the right of a dog is semantic similar to a dog sit-
ting to the left of a man. a blue boat is semantic similar to a
boat that is blue.” Followed by: CAPTION is semantic sim-
ilar to”, where CAPTION is the sentence we want to find
analogy for. The output of the BLOOM model is a continu-
ation of the sentence in the spirit of the initial prompt.

4. Analysis and Ablation Study
4.1. Individual Dataset Analysis

As discussed in the Dataset section (Section 4.1) of the
main paper, the VL-Checklist [11] evaluation dataset is
comprised of four different sets, Visual Genome (VG) [3],
VAW [7], SWIG [8], and HAKE [4]. In the main pa-
per, we presented the results over a combination of all the
datasets evaluated jointly. As promised in the main paper,
a more detailed analysis partitioned according to the indi-
vidual datasets comprising VL-Checklist is available in ta-
bles 1-10. Tables 1-5 show the results of the CC3M fine-
tuning experiments, corresponding to Table 1a in the main
paper. Tables 6-10 show the results of the models trained
from scratch on CC3M, corresponding to Table 1c in the
main paper. Note that not all aspects of the tests are avail-
able for all datasets, for example, VAW evaluation only in-
cludes the “Attribute” aspects, i.e. color, size, material,
state, and action. For each dataset we include evaluations
on all of its available aspects.

4.2. Error Analysis

In this section we qualitatively evaluate the success and
errors of our method and that of the CLIP [9] baseline. Fig-

ures 1-2 show examples where our model succeeds while
CLIP model fails.

Figure 3 show examples of our method failures. It is evi-
dent that most of these failure cases are ambiguous even for
a human observer. For example, in the second row of fig-
ure 3 there is an image with a lot of suitcases, some are open
and some are closed. Therefore, both the positive caption
“closed luggage” and the negative caption “open luggage”
are valid captions in this case.

5. Code
Our code and pretrained models are available at:

https://github.com/SivanDoveh/TSVLC

https://github.com/SivanDoveh/TSVLC


O-Large O-Medium O-Small O-Center O-Mid O-Margin Avg O

CLIP [9] 86.95 77.75 72.75 85.5 80.5 70.6 79.00
CLIP +LoRA 86.5 75.9 71.65 85.25 78.25 67.25 77.46

Ours RB+LLM Negs 91.7 83.2 78.9 90.3 84.55 77.4 84.34
Ours Combined 90.5 81.95 77.6 89.75 83.8 73.35 82.82

Table 1. Results of fine-tuning on CC3M evaluated on the VG dataset - Objects

A-Color A-Material A-Size A-State A-Action R-action R-spatial Avg A+R

CLIP [9] 68.9 65.4 72.1 69.3 72.37 62.4 54 66.35
CLIP +LoRA 72.3 64.8 69.4 63.6 69.71 55.7 41 62.36

Ours RB+LLM Negs 82.7 84.9 78.1 71.6 75.13 70.00 78.4 77.26
Ours Combined 79.9 78 76.8 68.7 74.18 61.9 63.2 71.81

Table 2. Results of fine-tuning on CC3M evaluated on the VG dataset - Attributes, Relations

O-Large O-Medium O-Small O-Center O-Mid O-Margin R-action Avg All

CLIP [9] 76.975 73.28 59.41 78.075 74.63 64.49 77.2 72.00
CLIP +LoRA 80.82 75.02 60.81 81.6 76.94 68.37 81.8 75.05

Ours RB+LLM Negs 82.77 77.97 67.34 83.05 79.92 75.36 87.6 79.14
Ours Combined 83.5 80.05 71.70 84.02 81.17 75.01 84.2 79.95

Table 3. Results of fine-tuning on CC3M evaluated on the SWIG dataset

O-Large O-Medium O-Small O-Center O-Mid O-Margin R-action Avg All

CLIP [9] 97.9 93.3 90.00 98.6 98.1 89.7 78.2 92.25
CLIP +LoRA 96.2 89.2 85.1 97.7 96.4 83.7 72.6 88.7

Ours RB+LLM Negs 97.9 89.8 88.4 99.2 97.7 86.1 79.4 91.21
Ours Combined 97.6 89.8 86.5 98.6 98.5 86.6 78 90.8

Table 4. Results of fine-tuning on CC3M evaluated on the HAKE dataset

A-Color A-Material A-Size A-State A-Action Avg All

CLIP [9] 71 73.3 68 53.3 62.7 65.66
CLIP +LoRA 74 71.4 66.9 51.6 59.1 64.6

Ours RB+LLM Negs 75.7 83.5 66.3 56.6 64.6 69.34
Ours Combined 75 76.7 69.9 55.9 64.6 68.42

Table 5. Results of fine-tuning on CC3M evaluated on the VAW dataset

O-Large O-Medium O-Small O-Center O-Mid O-Margin Avg O

CLIP [9] 76.5 66.15 64.35 74.85 66.6 62.35 68.46

Ours RB+LLM Negs 79.4 67.8 62.15 75.15 70.00 64.7 69.86
Ours Combined 76.7 67.4 62.15 74.7 67.85 64.15 68.82

Table 6. Results of training from scratch on CC3M evaluated on the VG dataset - Objects



A-Color A-Material A-Size A-State A-Action R-action R-spatial Avg A+R

CLIP [9] 62 58.3 68.4 46.8 63.87 44.3 32.5 53.73

Ours RB+LLM Negs 72.4 74.4 57 61.2 75.35 54.7 82.3 68.19
Ours Combined 74 64.4 65.9 54.6 70.99 51.4 56.2 62.49

Table 7. Results of training from scratch on CC3M evaluated on the VG dataset - Attributes, Relations

O-Large O-Medium O-Small O-Center O-Mid O-Margin R-action Avg All

CLIP [9] 68.15 62.36 58.60 68.15 63.74 60.26 65.9 63.88

Ours RB+LLM Negs 66.02 63.60 61.51 65.92 64.10 63.94 61.4 63.78
Ours Combined 67.57 64.94 60.21 66.55 65.52 67.49 60.4 64.67

Table 8. Results of training from scratch on CC3M evaluated on the SWIG dataset

O-Large O-Medium O-Small O-Center O-Mid O-Margin R-action Avg All

CLIP [9] 87.7 78.8 72 90.4 85 75.1 63.5 78.92

Ours RB+LLM Negs 86.8 85.8 79.6 91.9 86 79.2 74.8 83.44
Ours Combined 88.1 76.5 72.7 90.5 86.1 73 68.3 79.31

Table 9. Results of training from scratch on CC3M evaluated on the HAKE dataset

A-Color A-Material A-Size A-State A-Action Avg All

CLIP [9] 55.4 57 61.3 48.3 57 55.8

Ours RB+LLM Negs 75.1 68.6 56.3 61.1 60.2 64.26
Ours Combined 61.3 63.7 68.6 53.8 55.5 60.58

Table 10. Results of training from scratch on CC3M evaluated on the VAW dataset
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Pos: lying knife 
Neg: standing knife

Pos: lying cat 
Neg: standing cat

Pos: lying paper 
Neg: jumping paper

A
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Pos: white zipper 
Neg: light green zipper

Pos: silver knife 
Neg: burgundy knife

Pos: silver handle 
Neg: pale green handle
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Pos: metal cell phone 
Neg: plastic cell phone

Pos: steel handle 
Neg: cobblestone handle

Pos: metal utensils 
Neg: cardboard utensils

A
-S
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Pos: open seats 
Neg: closed seats

Pos: dry log 
Neg: wet log

Pos: clean apple 
Neg: dirty apple

Figure 1. Examples where our model correctly chooses the positive caption, while the CLIP baseline fails and incorrectly chooses the
negative caption. We show the respective positive and negative captions underneath each image.
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Pos: tall chair 
Neg: short chair

Pos: small bench 
Neg: large bench

Pos: large bench 
Neg: small bench
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Pos: woman holding champagne flute 
Neg: woman licking champagne flute

Pos: woman WEARING shorts 
Neg: woman helping shorts

Pos: weeds growing by walkway 
Neg: weeds eating walkway

R
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tia

l

Pos: mac & cheese by cracker 
Neg: mac & cheese far from cracker

Pos: tree behind sign 
Neg: tree in front of sign

Pos: coaster under drink 
Neg: coaster above drink

Figure 2. Examples where our model correctly chooses the positive caption, while the CLIP baseline fails and incorrectly chooses the
negative caption. We show the respective positive and negative captions underneath each image.



Pos: eating sheep 
Neg: walking sheep

Pos: eating panda 
Neg: posing panda Pos: resting dog 

Neg: sleeping dog

Pos: steel lamp 
Neg: metal lamp

Pos: steel lamp 
Neg: iron lamp

Pos: closed luggage 
Neg: open luggage

Pos: dirty spoon 
Neg: clean spoon

Pos: large mirror 
Neg: small mirror

Pos: large door 
Neg: small door

Pos: thin wire 
Neg: fat wire

Pos: bridge across tracks 
Neg: bridge on the left of tracks

Pos: motor on a boat 
Neg: motor nearby boat

Figure 3. Failure cases of our method. In most cases, they are justifiable as both positive and negative captions match the respective images.
Notably, these examples are also failing CLIP.
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