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In this document, we provide more implementation de-
tails, additional ablation studies as well as more visualiza-
tion results.

A. More Implementation Details

In Table 1 of the main body, we evaluate the performance
of our approach with various base detectors, including Reti-
naNet, FSAF, Faster-RCNN besides GFL V1. Since both
RetinaNet and FSAF are one-stage detectors as GFL V1,
we adopt the same setting as used by GFL V1. Regarding
the two-stage Faster-RCNN detector, we follow [4], modi-
fying its RPN head to 4 Convolution-GN-ReLU layers in-
stead of 1 convolution layer and using 256 feature channels,
which proves effective in balancing the accuracy and effi-
ciency [4].

In Table 8 of the main body, we compare our network
to MobileNet V2 [2], ShuffleNet V2 [1] and QueryDet [4].
We select the feature maps generated from the layers (2, 4,
6) and (0, 1, 2) as the input of FPN for MobileNet V2 and
ShuffleNet V2, respectively. Regarding QueryDet, we re-
implement it by using the same setting for fair comparison.
Particularly, we utilize the unified input size as 1,333 x800
and omit the calculation of the P; layer.

B. Additional Ablation Studies

We show additional results by our approach using differ-
ent residual structures, accelerating strategies, context clues
and training epochs.

B.1. On Residual Structures

As shown in Fig. 2 of the main body, we adopt a residual
structure to compensate the loss of contextual information

t indicates equal contribution.
* refers to the corresponding author.

Method | mAP APs, AP,; | GFLOPs  EPS
w.o. Res. | 284 505 28.1 | 15058 21.32
Focal Res. | 28.1 49.8 274 | 15352 19.98

Ours | 287 507 284 | 150.18 21.55

Table A. Comparison in terms of mAP (%) and GFLOPs/FPS with
different residual structures on VisDrone.

Method mAP APsy AP7s | GFLOPs  FPS
Baseline 284 50.0 27.8 52495  13.46
FPNonP3+P4only | 28.1 499 275 494.42  15.63
DWS 245 432 239 157.74  20.84
Ours 28.7 50.7 284 150.18  21.55

Table B. Comparison in terms of mAP (%) and GFLOPs/FPS with
different acceleration strategies on VisDrone.

Method mAP APsy AP75 | GFLOPs  FPS
Baseline 284 500 278 52495 13.46
Interpolation [3] | 26.9 48.5  26.1 212.15 13.80
Ours 28.7 50.7 284 150.18 21.55

Table C. Comparison in terms of mAP (%) and GFLOPs/FPS with
different context clues on VisDrone.

due to sparse convolutions. We therefore compare the per-
formance of the proposed CEASC network by using differ-
ent residual structures, including: 1) “w.o. Res.” without
using the residual structure; 2) “Focal Res.” using the raw
input for skip connection, i.e. F := F 4 X and 3) “Ours”
using the global contextual feature for skip connection, i.e.
F:=F+G.

As displayed in Table A, our approach reaches the best
performance, highlighting its advantage in capturing global
context.
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Figure A. Visualization of correlation between features generated by dense convolutions and sparse convolutions with distinct normalization

schemes on VisDrone.

Figure B. Visualization of dynamic masks estimated by AMM at different layers (from ‘P3’ to ‘P7’) in FPN of GFL V1 on VisDrone.
Highlighted areas are activated for computation.

B.2. On Acceleration Strategies

In Table 8 of the main body, we compare our approach
with the state-of-the-art lightweight models for drone-based
object detection. Here, we carry out the ablation study on
our approach using distinct acceleration strategies includ-
ing: 1) “FPN on P3+P4 only” that only adopts the P3 and
P4 layers for FPN, since the P5-P7 layers are unlikely to be
activated for sparse convolutions as observed in Fig. B; and

2) “DWS” that utilizes the Depth-Wise Separable (DWS)
convolution as in MobileNet, instead of the normal 3 x 3
convolution in the “Baseline”, i.e. the original GFL V1 de-
tector.

The results are summarized in Table B, indicating that
our approach outperforms the counterparts both in accuracy
and efficiency, due to the sparse convolutions optimized by
context-enhancement and adaptive multi-layer masking.



EpOCh Method mAP AP50 AP75 AR1 AR10 AR100 AR500 GFLOPs FPS
12 Baseline 278 492 273 | 0.63 6.27 34.7 442 524.95 13.48
Ours (CEASC) | 27.8 493 274 | 0.67 647 34.8 44.4 15193  21.52
15 Baseline 284 50.0 27.8 | 0.62 6.36 35.6 44.9 52495  13.46
Ours (CEASC) | 28.7 507 284 | 0.65 6.56 35.6 45.0 150.18  21.55

24 Baseline 28.9 509 284 | 072 6.53 35.7 45.2 52495 1341
Ours (CEASC) | 291 513 287 | 0.70 6.90 36.0 454 15142 21.49

Table D. Comparison in terms of AP/AR (%) and GFLOPs/FPS with the GFL V1 base detector using different training epochs on VisDrone.
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Figure C. Visualization of dynamic masks estimated by AMM at different layers (from ‘P3’ to ‘P7’) in FPN of GFL V1 on UAVDT.

Highlighted areas are activated for computation.

B.3. On Context Clues

In Sec. 3.1.2 of the main body, we mention an interpola-
tion method to generate ignored pixels from focal areas [3],
and an ablation study is conducted for comparison. The re-
sults in Table C reveal that interpolation incurs a drop on
the accuracy but consumes more computations.

B.4. On Training Epochs

In the literature, some studies train their models for vary-
ing epochs (e.g. 12 or 24). We thus provide more results
by using such numbers of training epochs in addition to 15
adopted in this work. As displayed in Table D, our approach
consistently boosts the performance by a large margin with
different training epochs. When more training epochs are
used, our approach reaches a higher accuracy, where 15 is a

good trade-off.

B.5. More Visualized Results

More results are visualized in Fig. A as supplements to
Fig. 3 of the main body. The features normalized by CE-
GN have higher correlation with dense convolutions than
GN, indicating that CE-GN enhances focal features with the
assistance of global context.

In Fig. B and Fig. C, we visualize more results as supple-
ments to Fig. 4 of the main body. As illustrated, the mask
generated by our approach well covers foreground areas, in-
dicating that sparse convolutions spend most computations
on foreground, thus promoting the efficiency without sacri-
ficing much precision.
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