
Supplementary Material:
Conditional Generation of Audio from Video via Foley Analogies

A.1. VQGAN codebook loss

We follow the formulation of Iashin and Rahtu [29],
which adapts the VQGAN loss [13, 57] to spectrograms.
The loss L is composed of three individual components:
the reconstruction and codebook loss [34, 57] LV QV AE , the
perceptual loss [32] Lperceptual, and a patch-based discrimi-
nator loss [31] Ldisc. We present the final loss we used to
learn the codebook:

LV QGAN = LV QV AE + Lperceptual + Ldisc (4)

We describe these losses next.

Reconstruction and codebook loss. Given the input wave-
form a and its mel spectrogram S = MSTFT(a) ∈ RT×F ,
where T and F are the dimension for time and frequency,
the encoder E will encode S into embeddings ẑtf and
corresponding quantized code q(ẑtf ) = ztf . The de-
coder D will then reconstruct ztf to a mel spectrogram
Ŝ = D(q(E(MSTFT(a)))). Following VQVAE, we mini-
mize the reconstruction loss between S and Ŝ as well as the
codebook loss between ẑtf and ztf :

LV QV AE = ||S− Ŝ||︸ ︷︷ ︸
recon. loss

+ ||ẑtf − sg[ztf ]||22 + ||sg[ẑtf ]− ztf ||22︸ ︷︷ ︸
codebook loss

.

(5)
where sg is the stop gradient operation.

Perceptual loss. We use the off-the-shelf VGGish-ish
model [29], a variation of the VGGish model with VGG-16
backbone trained on the VGGSound dataset, to evaluate the
perceptual loss. For the ith level of features of the original
and the reconstructed mel spectrogram, Si and Ŝi respec-
tively, the corresponding perceptual loss is given by their
squared L2 distance:

Lperceptual =

N∑
i=1

1

F iT i
||Si − Ŝi||22, (6)

where N is the number of layers we selected to calculate the
perceptual loss. We use N = 5 layers in our model, selected
as in [29].

Patch-based discriminator loss. We use the discriminator
loss introduced by Isola et al. [31]:

Ldisc = logD(S) + log(1−D(Ŝ)), (7)

where D is applied to a fully convolutional network at multi-
ple scales as a discriminator.

A.2. Dataset
All data comes from the Greatest Hits dataset, a lab-

collected dataset from Owens et al. [42], and the Coun-
tixAV [66] dataset. The Greatest Hits dataset is composed
of 977 videos (11 hours) of a drumstick interacting with
different objects in the scenes. The CountixAV [66] dataset
is composed of 1483 videos (4.1 hours) of repeated actions
including bouncing ball, skipping rope, and other actions in
realistic scenarios.

To evaluate our conditional Foley generation task, we
randomly sample 2-sec video clips from the test videos in
the Greatest Hits [42] dataset as input videos. We randomly
pair each silent input video with 3 conditional audio-visual
clips from different test videos. We obtain the conditional
Foley evaluation set of 582 input-condition pairs with 17
different materials and two action types.

We also evaluate our model on the CountixAV [66] dataset
by randomly choosing 2 seconds clips from the videos. We
apply a noise reduction algorithm [48] to improve the sound
quality before training and evaluation. Considering the lack
of the permission of the videos in the CountixAV [66] dataset,
we demonstrate the result qualitatively on the publicly-
sourced videos with proper permissions. We provide the
credit to those videos in the Appendix A.11

A.3. Implementation details
To train our complete model, we first train the VQGAN,

then train the audio predictor using its learned code. We
trained the VQGAN for approximately 400 epochs with a
batch size of 32 and a learning rate of 1.44 × 10−4 using
Adam [33]. We trained the transformer for 50 epochs with
a batch size of 8 and a learning rate of 1.6 × 10−4 using
4 NVIDIA A40 GPUs. The training of the VQGAN takes
approximately 5 days and the training of the transformer
takes roughly 20 hours.

Our model operates on 2 sec. video clips for both the
conditional and input videos, at a 15Hz video sampling rate
and 22.05 KHz audio sampling rate. The VQGAN codebook
encoder produces a 12× 5 time-frequency grid from a mel
spectrogram, which is converted from a waveform using
80 mel bins and 1,024 Fourier filters. We use d = 256 for
the codebook embedding dimension. The 2-sec. videos (30
frames) are randomly cropped and resized to 112 × 112,
and are represented as 30 1024-dimensional feature vectors,
obtained by performing a 1× 1 convolution on the ResNet
feature map. During training, we apply data augmentation in
the form of frequency and temporal masking to the spectro-
gram prior to extracting the clips. The model is trained on
both the Greatest Hits [42] dataset and the CountixAV [66]



dataset in the same manner.
During inference, we set the re-ranking tolerance to be

τ = 0.2.

A.4. Onset transfer baseline training details
For predicting onsets given a video, we used the same

variation of ResNet (2+1)D-18 [53] visual network as our
main model (i.e., after removing temporal striding). Our
model outputs a vector of predictions using a fully connected
layer after pooling (one onset prediction per input frame).
We obtain the ground truth onset according to the timing
label provided in the Greatest Hits [42] dataset by aligning
it to the closest frame. We use a binary cross entropy loss,
penalizing onset predictions that occur at incorrect times.
Since each input video can have more than one sound event,
we set the weight of each onset in the loss from the video
equally according to the total number of onsets in the input
so that the weight sums to one. The configuration of video
and audio is the same as our model, we use a frame rate
of 15Hz and an audio sampling rate of 22.05kHz. We train
the model for 100 epochs with a batch size of 12 clips of 2
seconds and a learning rate of 1 × 10−4 using Adam [33].
The model is trained on a single NVIDIA RTX-2080 GPU.

The model is used to detect the onset in both input and
conditional videos. We then randomly copy-and-paste the
sound from the conditional video at onset timings. We in-
cluded the onset transfer method to help analyze the genera-
tive models on Greatest Hits [40]. It simply detects onsets
and copy-pastes sounds from the conditional example. By
design, it (trivially) obtains near-perfect performance on the
material metric when there is only one material and also
performs well on onset metrics because it is directly trained
on onset labels. We emphasize that this baseline is not
generative and, in fact, we show that this method will fail
when the action is different in the input and condition pairs
(column 6 in Tab. 1). Qualitatively, we have found that it
often completely fails on CountixAV [60] since there are no
clear onsets. The number of onsets is rarely correct and the
method fails due to background noise (e.g. row 1 in Fig. 5).

A.5. Sound classifier training details for quanti-
tative experiment

We finetune two pretrained VGGish classifiers [25, 26]
to predict the action or the material presented in the video
based on the label provided in the Greatest Hits [42] dataset.
With the same input video settings, we train both of the
models with an early stopping criteria using Adam [33]. The
model is trained on a single NVIDIA RTX-2080 GPU with
a learning rate of 10−4 and batch size 32 video clips of 2
seconds. The trained model obtains a validation accuracy
of 75.6% on the material task and 92.0% accuracy on the
action prediction task.

Model

Window size

0.1-sec. 0.2-sec. Avg.
AP (%) AP(%) AP(%)

Style transfer∗ [18, 55] 46.9 46.7 58.3
Onset transfer 71.9 78.4 76.5

SpecVQGAN [29] 59.3 65.5 64.1
Ours - No cond. 59.3 73.2 69.8
Ours - Base 60.0 74.0 70.0

Table 3. Onset synchronization window size evaluation. We
measure the average precision of onset predictions that are within
different windows size of 0.1, and 0.2 seconds. We also measure
the averaged AP score under different window sizes (from 0.10s to
0.25s with a step of 0.05s).

A.6. Onset detection experiment with different
window size

We chose 0.1 seconds as the size of the detection window
for the onset detection experiment following the standard
value used for audio onset detection per mir eval [46]
and the Greatest Hits [42]. Alternatively, we have also ex-
perimented with different methods with alternative window
sizes. We found that (Tab. 3) our method outperforms all
the other generative baselines in the additional experiment.
Meanwhile, the gap between our method and the onset trans-
fer baseline is reduced when the window size is enlarged or
averaged over different window sizes.

A.7. Generation of longer audio
Following Iashin et al. [29], we generate longer audio

clips using a 2-sec. sliding window. During the process, we
always keep the token to be generated in the center of all
the visible tokens before feeding the tokens into the trans-
former. We have evaluated the onset sync. performance for
the Greatest Hits dataset [40] for 454 pairs of videos. From
Fig. 7, we note that our model continues to obtain strong
performance for videos up to 6 sec. We provide examples
of the generation of 4-sec., 6-sec., and 8-sec. in our project
webpage.

A.8. Re-ranking qualitative result
We notice that the re-ranking improves the synchroniza-

tion performance through the qualitative result in Fig. 6.
Note the generated sound with re-ranking shows a much
better synchronization performance in Row 2 and 3 in Fig. 6.

A.9. Human study details
For the human study, we recruited 609 participants from

Amazon Mechanical Turk, in total. We filtered out 233
pieces of feedback according to the answers the participants

https://xypb.github.io/CondFoleyGen/
https://xypb.github.io/CondFoleyGen/
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Figure 6. Re-reranked comparison results. We present 4 pairs of results to compare the effect of re-ranking qualitatively.

Figure 7. Automated onset sync. evaluation for different dura-
tions. We evaluate the performance of the onset synchronization
for videos of different durations.

provided to a sentinel example, where one of the videos
is attached with a clearly wrong sound that neither match
with the action in the video, nor provide a timbre close to
the chosen conditional video. We obtained 376 effective
feedback in the end.

We provided them with the following instructions:
• Please use headphones for the test. You may hear some

harsh or dissonant sounds, so please make sure to adjust
your device’s volume before the test.

• The task should take approximately 15 minutes to com-
plete.

• You will take part in an experiment involving visual and
hearing perception. To complete this task, you will need
to watch and listen to 21 groups of videos and answer
two questions for each group. Each group consists of the
following videos (all videos have audio):

– One input video: Video #1

– Two output videos: Video #2 and Video #3

• Your task is to answer the two questions at the bottom:

– One input video: Video #1. In which output Video
(#2 or #3) is the audio most synchronized with the
action in the video?

– In which output Video (#2 or #3) does the audio
sound most like the object or material in Video #1
according to the action in the output Video?

• You will complete a short practice of 5 groups of videos
(about 3 minutes long) before starting the main task, so
that you can get familiar with the interface.
We also provide the screenshot of the instruction page

and main test page that the participant will see during the
test in Fig. 8 and Fig. 9.

A.10. Randomly selected results
We provide randomly selected results in Fig. 10 (this

supplemental). Please also see the provided video. It is
notable that the generated audio provides a timbre very close
to the conditional video in most situations. Meanwhile, the
model can also generate a sound match with the timing of
the actions in the input video usually.

A.11. Video Credit
We have obtained permission to use and edit the videos

from the Greatest Hits dataset, and we have also recorded
some of the videos ourselves. We provide here the credit for
the publicly sourced and licensed videos that appear in the
paper and the supplement.

1. fotorealis - https://stock.adobe.com/video/
bambino - suona - bongo - percussioni - per -
musicoterapia/536371955 - Adobe Stock Extended
license.

2. FreeStockFootageClub - https://www.youtube.com/
watch?v=zI1_fAtpHQc - YouTube Creative Commons
CC BY license.

3. Ignat Gorazd - https://www.youtube.com/watch?
v=1_ckbCU5aQs - YouTube Creative Commons CC BY
license.

https://stock.adobe.com/video/bambino-suona-bongo-percussioni-per-musicoterapia/536371955
https://stock.adobe.com/video/bambino-suona-bongo-percussioni-per-musicoterapia/536371955
https://stock.adobe.com/video/bambino-suona-bongo-percussioni-per-musicoterapia/536371955
https://www.youtube.com/watch?v=zI1_fAtpHQc
https://www.youtube.com/watch?v=zI1_fAtpHQc
https://www.youtube.com/watch?v=1_ckbCU5aQs
https://www.youtube.com/watch?v=1_ckbCU5aQs


Figure 8. Instruction page of the AMT test. We present a screenshot of the instruction page that the participants will see at the beginning
of the test. The sensitive information is removed from the image.

4. kriista - https://www.youtube.com/watch?v=
6d1YS7fdBK4 - YouTube Creative Commons CC BY li-
cense.

5. Over & Out - https://www.youtube.com/watch?
v=SExIpBIBj_k - YouTube Creative Commons CC BY
license.

6. Over & Out - https://www.youtube.com/watch?
v=XxmZxM8AtUc - YouTube Creative Commons CC BY
license.

7. Percussion Play - https://www.youtube.com/
watch?v=fcjfKvdkJyI - YouTube Creative Commons
CC BY license.

8. Percussion Play - https://www.youtube.com/
watch?v=xcUyiXt0gjo - YouTube Creative Commons
CC BY license.

9. PhotoSerg - https://stock.adobe.com/video/
kid- juggles- the- ping- pong- ball- green-

screen/99378579 - Adobe Stock Extended license.

10. PUSAT E-PEMBELAJARAN UMS - https://www.
youtube.com/watch?v=S6TkbV4B4QI - YouTube
Creative Commons CC BY license.

11. Suliman Razvan - https://stock.adobe.com/
video/christian- monk- hitting- a- large-
wooden-piece-toaca-with-little-wooden-
hammer - to - summon - the - breathren - to -
prayer/93378558 - Adobe Stock Extended license.

12. Thomas Cremier - https://www.youtube.com/
watch?v=GFmuVBiwz6k - YouTube Creative Commons
CC BY license.

https://www.youtube.com/watch?v=6d1YS7fdBK4
https://www.youtube.com/watch?v=6d1YS7fdBK4
https://www.youtube.com/watch?v=SExIpBIBj_k
https://www.youtube.com/watch?v=SExIpBIBj_k
https://www.youtube.com/watch?v=XxmZxM8AtUc
https://www.youtube.com/watch?v=XxmZxM8AtUc
https://www.youtube.com/watch?v=fcjfKvdkJyI
https://www.youtube.com/watch?v=fcjfKvdkJyI
https://www.youtube.com/watch?v=xcUyiXt0gjo
https://www.youtube.com/watch?v=xcUyiXt0gjo
https://stock.adobe.com/video/kid-juggles-the-ping-pong-ball-green-screen/99378579
https://stock.adobe.com/video/kid-juggles-the-ping-pong-ball-green-screen/99378579
https://stock.adobe.com/video/kid-juggles-the-ping-pong-ball-green-screen/99378579
https://www.youtube.com/watch?v=S6TkbV4B4QI
https://www.youtube.com/watch?v=S6TkbV4B4QI
https://stock.adobe.com/video/christian-monk-hitting-a-large-wooden-piece-toaca-with-little-wooden-hammer-to-summon-the-breathren-to-prayer/93378558
https://stock.adobe.com/video/christian-monk-hitting-a-large-wooden-piece-toaca-with-little-wooden-hammer-to-summon-the-breathren-to-prayer/93378558
https://stock.adobe.com/video/christian-monk-hitting-a-large-wooden-piece-toaca-with-little-wooden-hammer-to-summon-the-breathren-to-prayer/93378558
https://stock.adobe.com/video/christian-monk-hitting-a-large-wooden-piece-toaca-with-little-wooden-hammer-to-summon-the-breathren-to-prayer/93378558
https://stock.adobe.com/video/christian-monk-hitting-a-large-wooden-piece-toaca-with-little-wooden-hammer-to-summon-the-breathren-to-prayer/93378558
https://www.youtube.com/watch?v=GFmuVBiwz6k
https://www.youtube.com/watch?v=GFmuVBiwz6k


Figure 9. Test page of the AMT test. We present a screenshot of the main test page that the participants will see during the test. The
participant need to answer both of the questions before moving to the next set of videos. Clicking on the “submit” button will navigate the
participant to the next question.
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Figure 10. Randomly selected results. We present 12 results generated by our model. Please refer to the video to hear the results.
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