Rethinking the Approximation Error in 3D Surface Fitting for Point Cloud
Normal Estimation: Supplementary Materials

Hang Du*, Xuejun Yan*, Jingjing Wang, Di Xie', and Shiliang Pu
Hikvision Research Institute, Hangzhou, China

{duhang, yanxuejun, wangjingjing9, xiedi, pushiliang.hri}@hikvision.com

In the supplementary materials, we provide implemen-
tation details of network architecture. For a thorough eval-
uation, we conduct more experiments, including ablation
studies on the z-direction transformation loss, robustness
against neighborhood sizes and Jet orders n, iterative esti-
mation experiment and more visualization results. In addi-
tion, we also provide an application of normal estimation,
i.e. surface reconstruction, to further verify the effectiveness
of our methods.

1. Network Architecture Details

In this section, we provide the details of network archi-
tecture.

1.1. GCN-based Transformation Network

In order to accomplish z-direction transformation, we
design a GCN-based spatial transformation network, which
is shown in Fig. 1. In particular, EdgeConv (3, 64) denotes
a EdgeConv [5] layer with the number of input channel as 3,
and the number of output channel as 64. AdaGP (64, 128)
represents an adaptive graph pooling [6] layer with the num-
ber of input/output channel as 64, and the output number of
point as 128. Convld (256, 512) indicates a 1D convolu-
tional layer with the number of input channel as 256, and
the number of output channel as 512. Avg. and Max pool-
ing denotes a combination of average and max pooling op-
erations. FC (1024, 512) indicates a fully-connected layer
with the number of input channel as 1024, and the number
of output channel as 512.

1.2. Normal Error Estimation

The network architecture of the normal error estimation
is shown in Fig. 2. Specifically, the point-wise feature is
fed into a 1D convolutional layer with the number of in-
put/output channel as 128. Subsequently, through a max
pooling layer, the global feature is concatenated with the
rough estimated normal to estimate the normal error. Then,

*These authors contributed equally to this work.
Corresponding author.

Global
Feat

Rot.
Matrix

FC (256,4)

3x3

EdgeConv (3, 64)
AdaGP (64,128)
AdaGP (128,64)
FC (1024, 512)

FC (512, 256)

Input patch
Np X3

EdgeConv (64, 128)
EdgeConv (128, 256)
Convld (256, 512)
Avg. & Max pooling

Graph-based Global Feature Extraction

Figure 1. Detailed architecture of GCN-based spatial transforma-
tion network.

the error of normal estimation is added on the rough estima-
tion to obtain the output normal. Finally, the output normal
is normalized into a unit vector.

e

©ix3

Rough 5
X ~

Estimated Normal N on e g

- g = 2

0 = o <

I S — N

F — 1) < =

< 2 st <

o o = £

- & [Concatenation| ; g

Np x 128 £ = S Z
Point-wise Feature [O Output Normal

Figure 2. Architecture details of the normal error estimation net-
work.

2. More Experimental Results

In this section, we first conduct more ablation studies
on the proposed methods. Then, we provide an application
of normal estimation to surface reconstruction. Finally, we
give more visualization results.

2.1. Ablation Study

Robustness to the neighborhood size. In the main text,
we have reported the results of DeepFit [1], AdaFit [7], and
GraphFit [3] under their optimal input neighborhood sizes.
To further verify the robustness to the neighborhood sizes,
we conduct comprehensive experiments on these baseline
methods. As shown in Table 1, we can find that, whatever
the input size and the baseline model, an evident improve-

Table 1. Normal angle RMSE with different neighborhood size on PCPNet dataset.

DeepFit AdaFit GraphFit
Size 256 500 700 256 500 700 256 500 700
Baseline v v v v v v v v v
+Ours v v v v v v v v v
None | 651 490 | 7.10 567 | 735 585 | 517 487 | 579 533 | 519 471 | 449 410 | 445 411 | 483 434
Low 921 891 | 941 923 | 963 927 | 917 902 | 917 9.16 | 905 875 | 880 878 | 874 866 | 870 8.68
Med 1672 16,61 | 1646 1638 | 1639 1634 | 1671 1672 | 1647 1643 | 1644 1631 | 16,54 1646 | 1605 16.02 | 16.04 16.07
High | 23.12 22.87 | 21.97 21.82 | 21.74 2170 | 23.02 22.87 | 22.12 21.91 | 21.94 21.64 | 22.69 22.64 | 21.64 21.57 | 21.36 21.45
Gradient | 7.31 552 | 771 622 | 806 643 | 603 572 | 664 584 | 590 551 | 515 491 | 522 483 | 551 531
Striped | 7.92 570 | 866 651 | 926 692 | 600 579 | 630 6.01 | 601 548 | 528 500 | 548 489 | 561 535
Average | 11.80 1075 | 11.89 1097 | 12.07 11.09 | 11.02 10.83 | 11.08 10.78 | 10.76 10.40 | 1049 10.33 | 1026 10.01 | 10.34 10.20
Table 2. Normal angle RMSE with different Jet order n on PCPNet dataset.
DeepFit GraphFit
Order 1 2 3 1 2 3
Baseline Ve v v v N v
+ Ours v v vV v v N
No Noise 6.72 525 | 8.08 520 | 6.51 490 | 470 422 | 462 417 | 445 411
Low Noise | 9.55 9.31 9.74 9.01 9.21 8.91 879 875 8.71 879 | 874 8.66
Med Noise | 16.77 16.77 | 16.56 16.61 | 16.72 16.61 | 16.29 16.30 | 16.11 16.02 | 16.05 16.02
High Noise | 23.16 23.00 | 23.00 22.78 | 23.12 2287 | 21.75 21.72 | 21.78 21.66 | 21.64 21.57
Gradient 7.46 5.97 8.77 5.85 7.31 5.52 5.26 5.11 5.39 498 5.22 4.83
Striped 7.84 6.15 9.21 6.14 7.92 5.70 5.44 5.25 5.50 5.10 5.48 4.89
Average | 1192 11.08 | 12.56 10.93 | 11.80 10.75 | 10.37 1024 | 1034 10.12 | 10.26 10.01

ment can be obtained by our methods. The results demon-
strate that the proposed methods are robust and effective
under different neighborhood sizes.

Robustness against the Jet orders. In addition, we pro-
vide more results on DeepFit [1] and GraphFit [3] to verify
the robustness of our methods against the polynomial order
n. Note that we have given the results of AdaFit [7] in
the main text. Here, as shown in Table. 2, we can obtain
stable performance improvements over the baseline models
under different polynomial orders. Besides, we observe that
n = 3 consistently achieves the best performance in terms
of average normal angle RMSE. We consider the order 3
is suitable for most points, and our methods can reduce the
approximation error of normal estimation, which bring ben-
efits to all the baseline models under different polynomial
orders.

Ablation on Z-direction Transformation Loss. As pre-
sented in Sec. 4.2 of the main text, we propose a z-direction
transformation loss that constrains the transformation ma-
trix to narrow the angle between the rotated ground-truth
normal and the axis z. Here, we conduct an ablation study
on z-direction transformation loss, to validate the effective-
ness of our GCN-based transformation network and pro-
posed loss function. First, we directly apply the z-direction
transformation loss on original DeepFit model [!]. From

the results in Table 3, we can find that the expected trans-
formation is non-trivial for the previous transformation net-
work, and thus there is no obvious improvements on origi-
nal DeepFit model [] (the left half of the table). Then, we
replace the previous transformation network with our pro-
posed GCN-based transformation network. In such a sce-
nario, we can achieve evident performance improvements
compared with baseline counterpart, and the best perfor-
mance is obtained when the loss weight is set as 2. The
experimental results imply that our z-direction transforma-
tion loss works well within a certain range.

2.2. Iterative Estimation

In the main text, we argue a better z-alignment could im-
prove the precision of normal estimation. Here, we conduct
an iterative experiment to verify it. The iterative estimation
refers to feeding the normal results of n-jet fitting or er-
ror estimation module back to n-jet fitting for an estimation
again. By doing so, we can rotate the estimated normal to
the axis z for a better z alignment, and thus achieve a more
accurate surface fitting. In Table 4, the results show a better
z-alignment indeed reduces the error of normal estimation.
However, simply iterative DeepFit (the 2nd line) still per-
forms worse than our methods (the 3rd line). Besides, such
scheme will cost much more inference time.

Table 3. Normal angle RMSE with different weights of z-direction transformation loss on PCPNet dataset. The left shows the results of
directly applying the z-direction transformation loss on original quaternion spatial transformation network (Q-STN) [1], and the right is
produced by using our GCN-based transformation network and proposed loss function.

DeepFit DeepFit + Ours
Trans. Weight 0 0.1 1.0 2.0 3.0 10.0 0 0.1 1.0 2.0 3.0 10.0
No Noise 6.51 649 658 655 6.69 676 | 505 507 497 490 499 5.05
Low Noise 921 916 9.12 910 9.07 9.09 | 909 9.05 894 891 898 9.03
Med Noise 16.72 16.60 16.65 16.64 16.65 16.63 | 16.74 16.67 16.66 16.61 16.68 16.70
High Noise | 23.12 23.02 2296 23.03 23.02 23.05 | 2288 22.87 2286 2287 2290 2290
Gradient 7.31 729 746 747 751 748 | 579 582 569 552 574 575
Striped 792 785 798 790 795 796 | 595 599 587 570 595 6.05
Average 11.80 11.74 11.79 11.78 11.82 11.83 | 10.92 1091 10.83 10.75 10.87 1091

Table 4. Iterative estimation on DeepFit model. The inference
time is tested on a NVIDIA TITAN X.

Method ‘ Average RMSE ‘ Time (ms)
DeepFit 11.80 0.47
DeepFit (iterative) 11.72 0.73
DeepFit + Ours 10.75 0.56
DeepFit + Ours (iterative) 10.72 0.84

Table 5. L2-CD (x10%) comparison for surface reconstruction of
baseline models with or without our methods.

. . . DeepFit AdaFit GraphFit

‘ DeepFit AdaFit GraphFit + Ours + Ours + Ours
Liberty 0.290 0.180 0.142 0.117 0.096 0.091
Star sharp | 0.148 0.106 0.105 0.099 0.112 0.101
Column 0.212 0.195 0.212 0.218 0.193 0.179
Netsuke 0.295 0.248 0.239 0.261 0.245 0.258

Average 0.236 0.182 0.175 ‘ (0.174) (0.161)« 0.157)

2.3. Surface Reconstruction Application

Accurate surface normals can benefit to reconstruct a
better surface. So, we adopt the Poisson reconstruction
implemented by Open3D library to reconstruct the surface
from the point cloud with the estimated normals. Fig. 3
shows that accurate normals are helpful to reconstruct a
more high-quality and complete surface from point clouds,
such as the finger of liberty, and the sharp corner of star.
Besides, we follow a common way [4] that samples 1 x 10°
points from the reconstructed meshes and computes the L2-
CD distance of them. The quantitative results are given in
Table 5. The results show that our methods can help the
baseline models to obtain a better reconstructed surface in
most cases, and consistently achieve improvements in terms
of average reconstruction error.

2.4. Visualization Results

In addition, we present more visualization results on
PCPNet [2] dataset. Besides, we also provide the corre-
sponding normal RMSE, and the percentage of good points
(PGP10 and PGP5) of each shape.

References

[1] Yizhak Ben-Shabat and Stephen Gould. Deepfit: 3d surface
fitting via neural network weighted least squares. In European
Conference on Computer Vision, pages 20-34. Springer, 2020.
1,2,3

[2] Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J
Mitra. Pcpnet learning local shape properties from raw point
clouds. In Computer Graphics Forum, volume 37, pages 75—
85. Wiley Online Library, 2018. 3

[3] Keqiang Li, Mingyang Zhao, Huaiyu Wu, Dong-Ming Yan,
Zhen Shen, Fei-Yue Wang, and Gang Xiong. Graphfit: Learn-
ing multi-scale graph-convolutional representation for point
cloud normal estimation. In European Conference on Com-
puter Vision, pages 651-667. Springer, 2022. 1, 2

[4] Baorui Ma, Zhizhong Han, Yu-Shen Liu, and Matthias
Zwicker. Neural-pull: Learning signed distance functions
from point clouds by learning to pull space onto surfaces. In
Proceedings of the 38th International Conference on Machine
Learning, volume 139, 2021. 3

[5] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On
Graphics (tog), 38(5):1-12, 2019. 1

[6] Xuejun Yan, Hongyu Yan, Jingjing Wang, Hang Du, Zhihong
Wu, Di Xie, Shiliang Pu, and Li Lu. Fbnet: Feedback net-
work for point cloud completion. In European Conference on
Computer Vision, pages 676—693. Springer, 2022. 1

[7] Runsong Zhu, Yuan Liu, Zhen Dong, Yuan Wang, Tengping
Jiang, Wenping Wang, and Bisheng Yang. Adafit: Rethinking
learning-based normal estimation on point clouds. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, pages 6118-6127,2021. 1,2

DeepFit AdaFit GraphFit DeepFit + Ours AdaFit + Ours GraphFit + Ours Ground Truth

DeepFit i GraphFit DeepFit + Ours AdaFit + Ours GraphFit + Ours Ground Truth

Figure 3. Comparison of surface reconstruction using the normals estimated by SOTA models with our methods. Our methods improve the
baseline models to produce more accurate and complete surfaces.

DeepFit AdaFit rathlt DeepFit + Ours
6.57 4.84 451 4.05 (2.521)
92.92/75.31 98.22/92.04 98.47/93.06 98.59/92.83
(5.67117.52)

9.47 7.20 6.68 7.00 (2.471)
80.16/46.31 90.26 / 65.66 91.77/ 68.64 91.19/68.16

(11.03 / 21.85)

AdakFit + Ours

4.06 (0.781)

98.74 /93.60

(0.52 / 1.56)

6.82(0.381)

91.41/68.55
(1.15/2.89)

GraphFlt + Ours

3.60 (0.911)
98.88 / 94.92
(0.41/ 1.86)

6.56 (0.121)
91.92 / 69.40
(0.15/0.76)

9.03 6.22 5.82 6.01 (3.020)
80.40/52.17 92.04/72.44 93.11/75.91 92.76 /75.80

(12.36 / 23.63)

3.28 1.64 1.52 1.98 (1.301)
97.12/91.84 99.42 / 98.76 99.68 / 99.48 99 38/98.92
2.26/7.08)

4.10 2.97 2.64 278 (1.321)
98.35/81.72 98.74/92.78 99.07/94.26 98.94/93.20

(0.59 / 11.48)

2321 (3.511)
74.69/61.52
(11.50 / 16.04)

26.72 2530 21.36
63.19/45.48 68.62/57.24 78.23/59.79

5.85(0.371)

92.92/76.17
(0.52/3.73)

1.48 (0.161)
99.58/99.31
(2.16/0.55)

2.64 (0.331)
98.96/94.18
(0.22 1 1.40)

21.61 (3.691)
76.40 / 65.16
(7.7817.92)

5.72 (0.101)
93.62/76.66
(0.51/0.75)

1.30 (0.221)
99.76 /99.54
(0.08/0.06)

*

230 (0.341)
99.36/95.76
(0.29 / 1.50)

20.75 (0.611)
78.92 / 68.08
(0.69/ 8.29)

40

0

Figure 4. The error heatmap of normal estimation on PCPNet dataset. The first line of bottom values represents the average error, and
second line reports the PGP10 and PGP5. The green values in brackets denote the relative improvement on the corresponding baseline

models. The angle errors are mapped to a range from 0° to 40°.

	. Network Architecture Details
	. GCN-based Transformation Network
	. Normal Error Estimation

	. More Experimental Results
	. Ablation Study
	. Iterative Estimation
	. Surface Reconstruction Application
	. Visualization Results

