
Appendix of Paper
“Federated Learning with Data-Agnostic Distribution Fusion”

A Pseudo-code of FedFusion

Algorithm 1: The FedFusion algorithm.

1 Initialize w0.
2 for each communication round t = 0, 1, . . . , T − 1 do
3 wt+1

k := the model received from client k
4 dk := (µ̂k, σ̂k, β̂k, γ̂k) // extracted from wt+1

k
5 repeat
6 Inference κm, ζ,, νm, ςm, ν

′

m and ς
′

m based on encoder φ
7 bk, λk, ck := sampling from distributions with Eq. 3, 5, 6
8 z̃m := sampling from N (ν

′

m, ς
′

m)

9 zk :=
∑M
m=1 bkm · z̃m

10 Recover zk to dk based on decoder θ with Eq. 10
11 until VAE converge;
12 wt+1 :=

∑M
m=1 πm

∑K
k=1 bkm · ckm ·w

t+1
k // model aggregation

13 broadcast wt+1 to all clients

B Convergence of FedFusion
This section proof the convergence of the proposed FedFusion method. Before proposing the proof, we present the following
assumptions and definitions.

Assumption 1 (Bounded Taylor’s Approximation): We assume that the loss function f(·) has L-smooth and τ -weak convexity,
that is, for all wi and wj:

(wi −wj)
T∇f(wj) +

τ

2
||wi −wj ||2 ≤ f(wi)− f(wj) ≤ (wi −wj)

T∇f(wj) +
L

2
||wi −wj ||2,

where τ ≤ L and L > 0.
Note that when τ < 0, the above assumption covers non-convexity functions.

Assumption 2 (Bounded Gradients Variance): Let x̂k is the sampled data from client-k and gk = ∇f(wk, x̂k) is the gradient
in regard to x̂k. We assume the stochastic gradients gk has the following upper-bounded variances in the whole training
process: (1) E||gk − E[gk]||2 ≤ V , V ∈ R; and (2) E||gk||2 ≤ G,G ∈ R.

Definition 1 (Diameter of Domain): Given a function f(w), where w ∈ W, and W is f ’s domain of definition. The diameter
of W is denoted by Γ: for every wi,wj ∈W: ||wi −wj || ≤ Γ.

Theorem 1 (Convergence Bound): If Assumption 1 and 2 hold, with learning epoch T , local epoch E, diameter of domain Γ,
and learning rate η, we have the following convergence bound for the proposed FedFusion algorithm:

E[f(wT )]− f(w∗) ≤ L

E + T

(
A

τ
+
E + 1

2
Γ2

)
, (1)

where w∗ are the optimal parameters; wT are the parameters at the T -th learning epoch, and A is a constant:

A = 4η(E − 1)2G+ η

M∑
m=1

π2
mV + 2ηG+ 2ΓG+ LΓ2.



Corollary 1 (Convergence Rate): If Assumption 1 and 2 hold, with learning epoch T and local epoch E, we have the following
convergence rate for the proposed FedFusion algorithm:

E[f(wT )]− f(w∗) ≤ O
(

1

E + T

)
. (2)

The proof is based on the convergence rate analyzed in [1]. We denote the optimal solution for w as w∗. Notice that
v̄t+1 = w̄t − ηgt where gt is the gradient. According to Assumption 1, 2 we have:

||v̄t+1 −w∗||2 = ||w̄t −w∗ − ηgt||2 + η2||gt − ḡt||2, (3)

and
||w̄t −w∗ − ηgt||2 = ||w̄t −w∗||2 − 2η〈w̄t −w∗, ḡt〉+ η2||ḡt||2. (4)

Let B1 = −2η〈w̄t −w∗, ḡt〉 and B2 = η2||ḡt||2. With Assumption 2, we have

B2 = η2||ḡt||2 ≤ η2G. (5)

We rewrite B1 by

B1 = −2η〈w̄t −w∗, ḡt〉

= −2η

M∑
m=1

πm〈w̄t −wt
m,∇fm(wt

m)〉 − 2η

M∑
m=1

πm〈wt
m −w∗,∇fm(wt

m)〉.

By Cauchy-Schwarz inequality1 and AM-GM inequality2, we have

−2〈w̄t −wt
m,∇fm(wt

m)〉 ≤ 1

η
||w̄t −wt

m||2 + η||∇fm(wt
m)||2. (6)

By Assumption 1, we have τ -weak convexity of loss function f(·):

−〈wt
m −w∗,∇fm(wt

m)〉 ≤ −(fm(wt
m)− fm(w∗))− τ

2
||wt

m −w∗||2. (7)

Applying Eq. (5)-(7) on Eq. (4), we have

||w̄t −w∗ − ηgt||2 ≤ ||w̄t −w∗||2 + η2G+

η

M∑
m=1

πm

(
1

η
||w̄t −wt

m||2 + η||∇fm(wt
m)||2

)
−

2η

M∑
m=1

(
fm(wt

m)− fm(w∗) +
τ

2
||wt

m −w∗||2
)
.

The above inequality can be rewrote as:

||w̄t −w∗ − ηgt||2 ≤ (1− τη)||wt
m −w∗||2 +

M∑
m=1

πm||w̄t −wt
m||2 + 2η2G− 2η

M∑
m=1

(fm(wt
m)− fm(w∗))

= (1− τη)||wt
m −w∗||2 +

M∑
m=1

πm||w̄t −wt
m||2 + 2η2G+ 2η

M∑
m=1

πm(fm(w∗)− fm(wt
m)).

(8)

With Assumption 1, we have L-smooth of loss function f(·):

fm(w∗)− fm(wt
m) ≤ 〈w∗ −wt

m,∇fm(wt
m)〉+

L

2
||w∗ −wt

m||2. (9)

1https://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality
2https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means



Using Assumption 1 and Defination 1, we have:

fm(w∗)− fm(wt
m) ≤ ΓG+

L

2
Γ2. (10)

Applying Eq. (8) and Eq. (10), we can rewrite Eq. (3) as

||v̄t+1 −w∗||2 ≤ (1− τη)||wt
m −w∗||2 +

M∑
m=1

πm||w̄t −wt
m||2 +

η2||gt − ḡt||2 + 2η2G+ 2ηΓG+ ηLΓ2.

With Assumption 2, we have:

E||gt − ḡt||2 = E||
M∑
m=1

πm(∇fm(wt
m,xm)−∇fm(wt

m))||2

=

M∑
m=1

π2
m||∇fm(wt

m,xm)−∇fm(wt
m)||2

≤
M∑
m=1

π2
mV.

From Lemma 3 of [1], we have:
M∑
m=1

πm||w̄t −wt
m||2 ≤ 4η2(E − 1)2G. (11)

Let ∆t = E||wt
m −w∗||2, with Assumption 1, we have

E[f(wT )]− f(w∗) ≤ 〈wT −w∗,∇f(w∗)〉+
L

2
||wT −w∗||2. (12)

For the optimal solution w∗,∇f(w∗) = 0. So

E[f(wT )]− f(w∗) ≤ L

2
||wT −w∗||2 =

L

2
∆t, (13)

and
∆t+1 ≤ (1− τη)∆t + ηA, (14)

where

A = 4η(E − 1)2G+ η

M∑
m=1

π2
mV + 2ηG+ 2ΓG+ LΓ2. (15)

Let η = β
t+E and v = max

{
βA
βτ−1 , (E + 1)∆1

}
, we have

∆t+1 ≤ (1− τη)∆t + ηA

≤ (1− τ β

t+ E
)

v

t+ E
+

β

t+ E
A

=
t+ E − 1

(t+ E)2
v +

(
βA

(t+ E)2
− τβ − 1

(t+ E)2
v

)
≤ v

t+ E + 1
. (16)

Substituting Eq. (16) to Eq. (13), we get

E[f(wT )]− f(w∗) ≤ L

2

v

E + t
. (17)

Taking β = 2
τ , the upper bound of v can be given by

v ≤ βA

βτ − 1
+ (E + 1)∆1 ≤

2A

τ
+ (E + 1)∆1, (18)



where ∆1 = ||w0 −w∗||2 ≤ Γ2.
With Eq. (17) and Eq. (18), we have

E[f(wT )]− f(w∗) ≤ L

E + t
(
A

τ
+
E + 1

2
Γ2), (19)

where

A = 4η(E − 1)2G+ η

M∑
m=1

π2
mV + 2ηG+ 2ΓG+ LΓ2. (20)

Theorem 1 is proved.

To prove Corollary 1, we take η = 2
τ(T+E) . With Theorem 1, we have

E[f(wT )]− f(w∗) ≤ L

E + T

(
C1

τ
+

C2

τ2(T + E)
+ C3

)
, (21)

where C1 = 2ΓG+ LΓ2 C2 = 8(E − 1)2G+ 2
∑M
m=1 π

2
mV + 4G and C3 = E+1

2 Γ2 are constants. So we have:

E[f(wT )]− f(w∗) ≤ O
(

1

E + T

)
, (22)

which proves Corollary 1.
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