Appendix of Paper
“Federated Learning with Data-Agnostic Distribution Fusion”

A Pseudo-code of FedFusion

Algorithm 1: The FedFusion algorithm.

1 Initialize w°.

2 for each communication roundt = 0,1,...,T — 1 do

3 | wi :=the model received from client k

4 dy = (fig, Ok, B, Yx) / extracted from WZ-H

5 repeat

6 Inference Koy, €, Vm» Sms V,,, and g, based on encoder ¢
7 bk, Ak, ci := sampling from distributions with Eq. 3, 5, 6
8 Zy, := sampling from N (v,,,,s,,)

M -

9 Zp = Zm.:l bkm " Zm

10 Recover zy to dy based on decoder 8 with Eq. 10
1 until VAE converge;

2| witt =M S bk - cem - WETL 1/ model aggregation
13 | broadcast w't! to all clients

B Convergence of FedFusion

This section proof the convergence of the proposed FedFusion method. Before proposing the proof, we present the following
assumptions and definitions.

Assumption 1 (Bounded Taylor’s Approximation): We assume that the loss function f(-) has L-smooth and T-weak convexity,
that is, for all w; and w ;:
T L
(Wi = W)V f(w)) + gllwi = wyl[* < flwi) = f(w)) < (Wi = w) TV F(w)) + S l[wi = w] %,

where T < L and L > 0.
Note that when 7 < 0, the above assumption covers non-convexity functions.

Assumption 2 (Bounded Gradients Variance): Let Xy, is the sampled data from client-k and g, = V f (W, Xy, ) is the gradient
in regard to X. We assume the stochastic gradients gy, has the following upper-bounded variances in the whole training
process: (1) E|lgr — E[ge]||> <V, V € R; and (2) E||gi||? < G,G € R.

Definition 1 (Diameter of Domain): Given a function f(w), where w € W, and W is f’s domain of definition. The diameter
of W is denoted by T': for every w;, w; € W: ||w; —w;|| <T.

Theorem 1 (Convergence Bound): If Assumption 1 and 2 hold, with learning epoch T, local epoch E, diameter of domain T,
and learning rate 1), we have the following convergence bound for the proposed FedFusion algorithm:

L A FE
Bl ] - ) < o (24 252, m

are the parameters at the T-th learning epoch, and A is a constant:

where w* are the optimal parameters; W'

M
A=4n(E-1)°G+n Y _ 7,V +2nG +2I'G + LT*.

m=1



Corollary 1 (Convergence Rate): If Assumption 1 and 2 hold, with learning epoch T and local epoch E, we have the following
convergence rate for the proposed FedFusion algorithm:

Bl - fv) < 0 (i ). @

The proof is based on the convergence rate analyzed in [1]. We denote the optimal solution for w as w*. Notice that
vitl = W' — ng’ where g’ is the gradient. According to Assumption 1, 2 we have:

t4+1 7W*H2

v = [[w' —w* —ng'|> +7*|lg" — &'|I*, 3)

and
W' —w* — gl = [[W" — w2 - 2n(w! —w*,g") + 0’| )

Let By = —2n(w! — w*, g') and By = n?||g!||?. With Assumption 2, we have
By = n*llg'||* < n*G. (%)

We rewrite B; by

*

Bl = *277<‘7vt - W 7gt>

M M
= —2n Z T (W' = Wi, V fin (W) — 21 Z T (We, = W,V frn (W)
m=1 m=1
By Cauchy-Schwarz inequality! and AM-GM inequality?, we have
1
2w —w, V(W) < Huwt = Wil + 2lV fin (w7, 12 (6)
By Assumption 1, we have T-weak convexity of loss function f(-):
* * T *
~(Wi = WV (W) < = (Fn (W) = Fn (W) = S [lwy, — w2 (7

Applying Eq. (5)-(7) on Eq. (4), we have
Wt =W =g <[ = w4 PG

M
1,
03 o (LI = WPV ) ) -
m=1
M T
20" (fnlWh) = (") + 1wl = w[2).
m=1
The above inequality can be rewrote as:

M M
W —w* —ng|? < (L=m)l|wh, = W[+ > mnl[W' = Wi [P+ 20°G = 20 ) (fm(Wh) = fin(W7))
m=1

m=1
M M
= (L=mllwh, =W P+ Y mllWh = Wi P+ 207G +20 D mon(fin (W) = fn (W)
m=1 m=1
)
With Assumption 1, we have L-smooth of loss function f(-):
* * L *
P (W) = Fn (W) <AW" = Wi,V fon (W) + S [W" = wi, [[2. ©)

"https://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality
*https://en.wikipedia.org/wiki/Inequality_of_arithmetic_and_geometric_means



Using Assumption 1 and Defination 1, we have:
Fn (W) = fm(W, )<FG+LF2 (10)
Applying Eq. (8) and Eq. (10), we can rewrite Eq. (3) as
M
9 = wr P < (= m)llwy, — WP Y mal Wt — w1

7lgt — g2 + 272G + 240G + nLT2.

With Assumption 2, we have:

M
Ellg' —g'lI> = Bl Y wm(Vim(Wh Xm) = Vm(wh))|?
m=1
M
= Tl IV fon Wiy Xm) = V fon (w1, |2
m=1
M
< Z 7T72nV.
m=1
From Lemma 3 of [1], we have:
M
> W= wh|[? < 4n?(E - 1)°G. (11)
m=1

Let A = E||w!, — w*||?, with Assumption 1, we have

L
E[f(wTD)] — f(w*) < (wl —w*, Vf(w")) + §||WT — w2 (12)
For the optimal solution w*, V f(w*) = 0. So
L L
Ef(w")] - f(w) < ] lw —w|[? = C A (13)
and
AL < (1= ) At + A, (14)
where
M
A=4n(E—1)°G+n Y 7V +2G +2IG + LT?. (15)
m=1
Letn = ; Eandv—max{ﬁ ,(E4+1) Al},wehave
AL < (1 - T’I])At +nA
v p
< A
- ( t + E)t +F t+F
_t+E-— 1 BA T8 —1
t+E2 T \t+E? (t+E2
v
_ 1
t+E+1 (16)
Substituting Eq. (16) to Eq. (13), we get
L v
E[f(wD)] - f(w*) < = : 1
D) - fw) < 5 a7)
Taking 8 = %, the upper bound of v can be given by
A 2A
v A L Era <A b ErA, (18)
Br—1 T



where Ay = ||w? — w*||? < T2
With Eq. (17) and Eq. (18), we have

where

Theorem 1 is proved.

L A FE+1

E[f(wh)] = f(w") <

- E—I—t(

M

T

2

r?),

A=dn(E—1)*G+n Y 72V +2mG +2IG + LI,

m=1

To prove Corollary 1, we take n = ﬁ With Theorem 1, we have
L Ch Co
E - < — [ =4 —= 4+
WOl f(w)—E+T(T T B " 3)’

where C} = 2T'G + LT Cy = 8(E — 1)2G + 23°M_ 72V + 4G and C3 =

which proves Corollary 1.

E[f(wT)] - f(w") <O (
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