Supplementary materials

The following supplementary materials provide more details of our proposed method and experimental setups, which are omitted in the main paper due to space limitation.

A.2.2. Additional Color X-ray Security Images

The color of objects in the X-ray security image varies differently according to the materials, thickness, viewpoint and complex background, as shown in Figure 10.

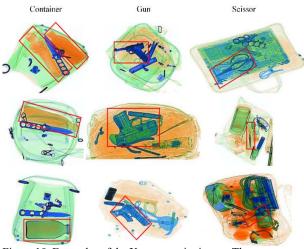


Figure 10. Examples of the X-ray security image. The appearance of item varies for different materials, thickness, viewpoint and background. The prohibited items are marked with a red box.

A.3.3 Additional Details of Loss Function

We develop a Luminance loss in Logarithmic form (LL) \mathcal{L}_{LL} as follows:

$$\mathcal{L}_{LL} = 1 - \left[\log \ell(I_f, I_{fb}, w_1) + \log \ell(I_b, I_{fb}, w_2) \right]$$
(19)

where $\ell(x, y, w) = \frac{2\mu_x \mu_y}{\mu_x^{4w} + \mu_y^2}$, then we could deduce:

$$\mathcal{L}_{LL} = 1 - \left[\log \ell (I_f, I_{fb}, w_1) + \log \ell (I_b, I_{fb}, w_2) \right]$$

= $1 - \log \frac{2\mu_f \mu_{fb}}{\mu_f^{4w_1} + \mu_{fb}^2} \bullet \frac{2\mu_b \mu_{fb}}{\mu_b^{4w_2} + \mu_{fb}^2}$
= $1 - \log \frac{4(\mu_f \mu_b) \mu_{fb}^2}{\mu_f^{4w_1} \mu_b^{4w_2} + (\mu_f^{4w_1} + \mu_b^{4w_2}) \mu_{fb}^2 + \mu_{fb}^4}$ (20)
 $4\mu_c \mu_b$

$$=1-\log\frac{-\mu_{f}\mu_{b}}{\frac{\mu_{f}^{4w_{i}}\mu_{b}^{4w_{2}}}{\mu_{fb}^{2}}+\mu_{fb}^{2}+(\mu_{f}^{4w_{i}}+\mu_{b}^{4w_{2}})}$$

=

where μ_f , μ_b and μ_{fb} respectively represent the local mean of the prohibited item I_f the baggage image I_b and the fused image I_{fb} . When the function is optimized to the minimum, the fusion result μ_{fb} is expected to converge to be $\mu_f^{W_1} \cdot \mu_b^{W_2}$. Meanwhile, given the μ_f of non-overlapping region is 1, the non-overlapping region of fused image I_{fb} could retain its own information in the background and avoid the influence of the prohibited item.

In practice, we use
$$\ell(x, y, w) = \frac{2\mu_x \mu_y + \varepsilon}{\mu_x^{4w} + \mu_y^2 + \varepsilon}$$
, adding a

tiny constant \mathcal{E} to relieve an abnormal zero value.

The power weights w_1 and w_2 denote the preservation degree. We automatically estimate the weights w_1 and w_2 from the feature of R, G and B component of the prohibited item and the baggage image independently, to get different power weights w_1 and w_2 for R, G and B component. To be specific, we first activate the features by using the Softmax function, and then multiply the result by 2 to ensure the sum of w_1 and w_2 is 2.

A.4.1 Additional Details of SIXray Dataset

SIXray dataset contains six kinds of prohibited items: guns, knives, wrenches, pliers, scissors and hammers. These items have great diversity in terms of scale, viewpoint and overlapping. The statistical information of SIXray dataset is shown in Table 6. The distribution of these prohibited items is similar to the real-world security inspection scenario, where the occurrence of prohibited items is rather rare. This dataset consists of SIXray10, SIXray100 and SIXray1000 dataset, which involves 10×, 100× and 1000× negative images without prohibited items.

Table 6 The distribution of the public SIXray dataset.										
The SIXray Dataset (1,059,231)										
	Negative									
Gun	Knife	Wrench	Plier	Scissor	Hammer	Negative				
3131	1943	2199	3961	983	60	1,050,302				

A.4.5. Additional evaluation experiments

We prepare 12 different groups of prohibited X-ray security datasets, each consisting of 40 real prohibited X-ray security images and 60 synthetic prohibited X-ray security images from the proposed model. Then, 12 experienced X-ray security inspectors judge the true and false of the 100 images. The correct number of each inspector is listed in Table 7, and the average misjudgement ratio of all inspectors is 53 among 100. This result demonstrates that our synthetic prohibited X-ray security images are realistic enough to fool the inspectors.

		J				P	J					·	
id	1	2	3	4	5	6	7	8	9	10	11	12	Mean
Score	57	71	46	30	53	36	57	46	44	68	28	32	47.3

Table 7 The subjective evaluation score of each inspector judging between the real and synthetic images.