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Here we provide more details on architectural design,
additional ablations, and visual comparisons for burst SR,
low-light image enhancement and denoising.

1. Network Architectural Details
In Burstormer, the EDA module is a 3-level encoder-

decoder, where each level employs 1 FA (containing single
deformable conv. layer) and 1 RBFE module. In the image
reconstruction stage, we use 2 NRFE modules. The BFF
unit both in RBFE and NRFE consists of 1 BFA module.

Figure 1 shows the BFA module that consists of multi-
dconv head transposed attention (MDTA) and gated-Dconv
feed-forward network (GDFN) [9]. MDTA encodes local
and non-local context, and efficient enough to be applied
to high-resolution images. Whereas, GDFN performs con-
trolled feature transformation i.e., suppressing less informa-
tive features, and allowing only the useful information to
pass further through the network.

2. Ablations on alignment and fusion modules
Table 1 compares the the properties of the proposed

EDA and other existing alignment modules. Unlike exist-
ing explicit feature alignment approaches DBSR [1] and
MFIR [2], the proposed EDA operates at multiple spatial
scales and aligns burst features implicitly without any ad-
ditional supervision. Overall, the proposed EDA module
possesses required properties which makes it effective for
the burst feature alignment.

Table 2 compares several feature fusion techniques. Our
NRFE is flexible to taking as input the features of more than
two frames. It extracts local and non-local burst features,
enables long-range inter-frame interactions and aggregates
the burst neighborhoods to obtain high-quality image.

3. Additional visual results
Burst Super-resolution. Figure 2, and Figure 3 show

qualitative results of competing approaches on examples

from the SyntheticBurst and (real) BurstSR datasets [1] for
4× SR. The reproductions of our Burstormer are more de-
tailed, sharper than those produced by the other methods.

Burst low-light image enhancement. Figure 4 depicts
that Burstormer produces images that are visually more
closer to the ground-truth than the other approaches.

Burst Denoising. Figure 5 shows that the proposed
Burstormer is capable of removing noise, while preserving
the desired texture and structural content.
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DBSR/MFIR [1, 2] TDAN [6] PCD [7] EBFA [4] EDA (Ours)

Extra supervision × × × ×
Implicit alignment ×
Multi-scale hierarchy × ×
Attention for feature denoising × × ×
Reference-frame based refinement × × × ×

Table 1. Ablation on existing Feature alignment strategies with our EDA module.

DBSR/MFIR [1, 2] PBFF [4] NRFE (Ours)

Flexible w.r.t multiple inputs ×
Long-range inter-frame interaction ×
Local and non-local feature extraction ×
Computational overhead ↓ ↑ ↓

Table 2. Ablation on existing Feature fusion techniques with our NRFE module.
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Figure 1. Burst Feature Attention (BFA) used in the proposed alignment and reconstruction stages to extract features encoding both local
and non-local pixel interactions.



Figure 2. Burst super-resolution (4×) results on SyntheticBurst dataset [1].



Figure 3. Burst super-resolution (4×) results on BurstSR (real) dataset [1].



Figure 4. Burst low-light image enhancement comparisons on the Sony subset of SID dataset [3].
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Figure 5. Burst denoising results on burst images from the grayscale [5] and color datasets [8].


