
A. Implementation details
A.1. Training details

In the following, we provide additional details on our
training protocol and choice of parameters. Throughout our
experiments, our model was trained on a single NVIDIA
Quadro RTX 8000 graphics card with 48GB VRAM.

Data preprocessing For a given shape collection S, we
apply a few data standardization steps to ensure training
stability. For each X (i), we normalize the scale of the shape
by setting the approximate geodesic diameter to a constant

value
√
area(X (i)) = 2

3
. The pose is further centered around

the origin by setting the mean vertex position to 0 ∈ R3. The
eigenvalues and eigenvectors required for our method are
precomputed prior to training our model. Otherwise, our
method is directly applicable to any collection of shapes that
fulfill the weak pose alignment as discussed in Section 3.1.

Training scheduling Our general training protocol is out-
lined in Section 3.4 and illustrated visually in Figure 2 of the
main paper.

In each forward pass, we first query the DiffusionNet
backbone Φfeat to obtain sets of local features F

(i) ∶=
Φfeat(X (i)) and F

(j) ∶= Φfeat(X (j)) for a pair of input
shapes X (i) and X (j). In the second step, the matching
module (Π(i,j)

,V
(i,j)

, ℓ
(i,j)
match) ∶= Φmatch(F(i)

,F
(j)) com-

putes a set of putative correspondences Π
(i,j), registered

vertices V(i,j) and the corresponding matching loss ℓ(i,j)match.
Finally, Equation (6) produces the multi-shape correspon-
dences Π

(i,j)
mult, which then allows us to compute the loss

ℓ
(i,j)
cyc through Equation (7).

As stated in Section 3.4, the shape graph G is updated reg-
ularly after a fixed number of epochs. This interval is chosen
in dependence of the number of training shapes as a round
figure that results in around 10k − 15k training iterations
per update. To reduce the computational load, the pairwise
correspondences between all pairs of training shapes Π(i,j)

mult

are precomputed and stored each time the shape graph is
constructed. Additionally, we wait for 5 shape graph update
cycles before activating the cycle-consistency loss. This
burn-in period allows the feature extractor and putative cor-
respondence modules to converge to a certain degree which
facilitates a stable training and reduces stochasticity.

Learning Our model is trained in an end-to-end manner
with the Adam optimizer [32], using standard parameters.
All the learnable weights are contained in the DiffusionNet
backbone I. The DeepShells pairwise matching module II
and multi-matching module III convert the learned features

into correspondences, but these maps themselves are fully
deterministic. The backward pass updates the Diffusion-
Net weights both in terms of the pairwise alignment loss
ℓ
(i,j)
match and the cycle-consistency loss ℓ

(i,j)
cyc . The former

stems from Equation (3) and the latter term is defined in
Equation (7). The cycle-consistent correspondences them-
selves Π

(i,j)
mult are obtained from non-differentiable opera-

tions, since they are the quantized outputs from DeepShells
concatenated via Dijkstra’s algorithm in Equation (6a). In-
stead, the gradients from ℓ

(i,j)
cyc pass information back to the

DeepShells layer II through the registrations V(i,j).

Hyperparameters We set the cycle-consistency loss
weight to λcyc = 0.5. The number of latent dimensions
of the DiffusionNet encodings is chosen as l = 128 and the
architecture comprises 4 consecutive DiffusionNet blocks.
For the DeepShells matching layer, we directly use the hy-
perparameters specified by the original publication and the
corresponding source code [21]. Specifically, the number
of eigenfunctions used to compute the smooth shell prod-
uct space poses (see Appendix A.2.2) is upsampled on a
log-scale between kmin = 6 and kmax = 21.

A.2. Architecture details

A.2.1 Feature backbone

Our network proposed in Section 3.2 leverages the recent
DiffusionNet [57] backbone for local feature extraction. We
outline the basic architecture of this module here and refer
to [57, Sec. 3] for further technical details.

The core motivation is to model feature propagation of
signals f(x, t) on the surface of a shape X (i) as heat diffu-
sion, governed by the standard heat equation

∂

∂t
f(x, t) = ∆f(x, t). (9)

In this context, ∆ is the intrinsic Laplace-Beltrami operator
on the surface X (i). In the discrete case, a common approxi-
mation is the cotangent Laplacian L ∶= −M−1

S ∈ Rm×m,
where M and S are the mass matrix and stiffness matrix,
respectively. We further consider the truncated basis of eigen-
functions Ψ ∈ Rm×k and corresponding diagonal matrix of
eigenvalues Λ ∈ Rk×k of the discretized Laplacian. For a
given signal f ∈ Rm on X (i), the heat propagation for a
time-interval t > 0 according to Equation (9) then results in
the approximate solution

Ht(f) ∶= Ψ exp(tΛ)Ψ†
f . (10)

For a given feature matrix F ∈ Rm×l, an individual opera-
tor Ht is applied separately to each channel with different
learnable time step weights t. A key benefit of such propa-
gation operators is that they are indifferent to the sampling



density and therefore robust to remeshing and local noise.
On the other hand, pure heat diffusion is spatially isotropic
and therefore not sufficiently expressive. To break radial
symmetry, DiffusionNet additionally leverages a gradient-
based feature refinement layer. At every point on the surface,
it computes inner products between spatial gradients of the
(scalar) feature signals on the tangent plane.

Putting everything together, an individual DiffusionNet
block takes a set of features F, propagates information both
via a spatial diffusion and a spatial gradient layer, and feeds
them to a per-point multilayer perceptron (MLP). The first
layer is initialized by the input features, defined as the vertex
coordinates V(i). For further technical details, we refer the
interested reader to the original publication [57].

A.2.2 Hierarchical pairwise matching

In Section 3.2, we further introduced our differentiable
matching layer Φmatch based on DeepShells [21]. The final
map is fully specified by Equation (3). In the following, we
provide additional technical details required to derive the
exact optimization steps and compute Φmatch in practice.

Following [21, Sec. 3], we first introduce the following
latent feature representation of a shape X (i) that is used
within each DeepShells layer

F
(k)
X (i) ∶= (Ψ(k)

, S
(k)(V(i)) , N(k)) ∈ Rm×(k+6) (11)

where Ψ
(k) are the first k eigenfunctions of the intrinsic

Laplace-Beltrami operator on X (i), corresponding to the
smallest eigenvalues. The operator S(k) is the smoothing
map initially proposed in [19, Eq. (8)]. The matrix N

(k)

denotes the outer normals of the (smoothed) input geometry.
Overall, the resulting feature tensor F(k)

X (i) yields a (k+6)-

dimensional embedding per vertex V
(i)

∈ Rm×3, depending
on the number of eigenfunctions k. In order to align two
shapes in this embedding space, an affine transformation is
proposed

F̂
(k)
X (i)(C(k)

, τ
(k)) ∶= (Ψ(k)

C
(k)†

, S
(k)(V(i))+

Ψ
(k)

τ
(k)

, N̂
(k)) ∈ Rm×(k+6)

, (12)

that deforms the input shape X (i) in the (k+6)-dimensional
embedding space. This deformation is parameterized with a
functional map C

(k)
∈ Rk×k [44] and displacement coeffi-

cients τ (k) ∈ Rk×3. The outer normals of the deformed pose
are denoted as N̂(k).

As we discussed in Section 3.2, the correspondence task
in our framework is fully specified by the optimal transport

energy Equation (2). To make the resulting update steps
differentiable, an additional entropy regularization term is
added to the energy

Ematch,reg(F,G; Π̃) = Ematch(F,G; Π̃)+
λent ∑

i′,j ′

Π̃i′,j ′ log Π̃i′,j ′ . (13)

This is a common approach that was initially proposed by
the seminal work of Cuturi et al. [13]. One compelling
implication is that Ematch,reg can be minimized efficiently
with respect to the transport plans Π̃ ∈ [0, 1]m×n through
Sinkhorn’s algorithm. Moreover, each individual update step
of this algorithm is differentiable which makes it viable for
standard gradient-based optimization. The resulting map
Φmatch is specified by the following alternating scheme of
optimization steps

(C(k)
, τ

(k)) ↦ argmin
Π̃

(k)
∈

T (X (i)
,X (j))

Ematch,reg(F̂
(k)
X (i) ,F

(k)
X (j) ; Π̃

(k)),

(14a)

Π̃
(k)

↦ argmin
C(k),τ (k)

Ematch,reg(F̂
(k)
X (i) ,F

(k)
X (j) ; Π̃

(k)),

(14b)

Through this scheme, the minimization of the energy
Ematch,reg is decoupled into two separate update steps, each
of which can be solved efficiently in closed form. The
first expression is minimized via Sinkhorn’s algorithm to
obtain an optimal transport plan Π̃

(k) from the transporta-
tion polytope T (X (i)

,X (j)). The second update results in
a standard linear least squares problem, see [21, Sec. 3]
for additional details. For the initial step, we replace the
(k+6)-dimensional feature embeddings with the learned fea-
tures F(i) and F

(j) produced by the DiffusionNet backbone.
The map Φmatch then alternates between the minimization
steps Equation (14a) and Equation (14b) while increasing
the number of eigenfunctions k after each step. The final
outputs are defined as

Π
(i,j)

∶=argmin
Π

Ematch(F̂
(kmax)
X (i) ,F

(kmax)
X (j) ; Π) (15a)

V
(i,j)

∶=V
(i)

+Ψ
(kmax)τ

(kmax), (15b)

ℓ
(i,j)
match ∶=∑

k

Ematch(F̂
(k)
X (i) ,F

(k)
X (j) ; Π̃

(k)). (15c)

The matches Π
(i,j)

∈ {0, 1}m×n, with Π
(i,j)

1n = 1m,
produced by Φmatch are thereby the outputs of the final
optimization layer kmax. In practice, they are obtained as the
hard nearest-neighbor assignment between the final obtained
shape embeddings F̂(kmax)

X (i) and F
(kmax)
X (j) .



(i) Full graph. (ii) MST graph. (iii) TSP graph. (iv) Star graph.

Figure 6. An overview of different shape graph topologies G. We consider graphs that are (i) fully connected, (ii) minimal spanning trees,
(iii) minimal Hamiltonian paths, specified by the traveling salesman problem and (iv) star graphs centered around one canonical pose. We
provide a detailed discussion in Appendix B. Unless stated otherwise, the full graph (i) is the default for our approach.

B. Shape graph topology
We explore the following classes of graph topologies for

the shape graph G, see also Figure 6 for a visualization:

i. Full graph. The default setting for our method is the
fully connected graph with the edge weights defined
in Equation (5).

ii. MST graph. We consider the minimal spanning tree
corresponding to the full graph G. This graph topology
is a minimal choice, in the sense that it has the smallest
total edge weight among all subgraphs of G that span
the set of nodes S.

iii. TSP graph. Based on the traveling salesman problem,
we predict a Hamiltonian path of minimal total edge
weight. This effectively defines an optimal ordering of
the input set S.

iv. Star graph. We define a complete, bipartite graph
which connects one specific center node with all N −
1 remaining nodes. The idea is to imitate template-
based shape matching methods such as [4, 23] where
all training poses are matched to a canonical shape.

Unless stated otherwise, we use the fully connected graph
(i) by default in our experiments in Section 4. Choosing the
number of retained edges is generally subject to a trade-off
between accuracy and efficiency. Using (i) all N(N−1)

2
edges

often yields the most accurate matching Π
(i,j)
mult, since this

leads to the shortest possible path lengths in Equation (6a).
Nevertheless, the sparse graph topologies (ii)-(iv) might be
preferable for specific applications. All three definitions
(ii)-(iv) specify variants of spanning trees with exactly N −1
edges. This means, that the memory complexity for storing

the graph, as well as the full query runtime cost is in O(N),
see Appendix C for a cost analysis. Thus, they are more
suitable for very large training sets or in scenarios where
computational resources are scarce. See Section 4.4 in the
main paper for an empirical comparison of the different
topologies (i)-(iv).

Discussion Each of the variants (ii)-(iv) has interesting
properties that might give rise to potential new avenues of
applications in future work: (ii) Removing the (k-1) largest
edges in the MST graph yields a subdivision of G into k op-
timal clusters (MST clustering). (iii) The TSP graph orders
the input shapes into a sequence, i.e., predicts a canonical
ordering. (iv) Choosing an optimal star graph automatically
selects one of the shapes in the collection S as the canoni-
cal pose. By comparing the set of all possible star graphs,
we can in principle rank all input poses in terms of how
representative they are of the underlying shape manifold.

C. Empirical computation cost

Training We empirically measure the computation cost of
our full pipeline. To this end, we choose a training set of
{102, 202, 502, 1002} pairs from the SURREAL [61] dataset
with a fixed mesh resolution of 6890 vertices, which is com-
mon for SMPL [37] meshes. The resulting training runtime
and memory costs are summarized in Table 4. Averaged over
all samples, our model takes around ≈ 0.4s per training pair.
The majority of the cost for constructing the graph G results
from querying all sample pairs, which is equivalent to the
epoch training cost minus the backward pass. The remaining
cost stems from precomputing the concatenated, pairwise
matches as discussed in Appendix A.1.



#pairs = 10
2

20
2

50
2

100
2

Epoch training time (s) 37.85 ± 2.48 174.82 ± 8.31 921.23 ± 25.56 4192.91 ± 142.03
Graph construction (s) 36.04 ± 1.95 157.30 ± 7.04 893.23 ± 9.05 3814.96 ± 44.48

Required RAM (GB) 3.57 ± 0.02 3.96 ± 0.04 5.81 ± 0.28 9.02 ± 1.73

Table 4. Empirical training cost. We quantify the computation cost of our pipeline for different training set sizes. For a given number of
shapes N = ∣S∣, one epoch consists of #pairs = N

2
∈ {102, . . . , 1002} optimization steps that each match a pair of shapes X (i)

,X (j)
∈ S .

#pairs = 10
2

20
2

50
2

100
2

Total query Full graph 41.00 ± 3.32 166.91 ± 9.54 1077.06 ± 28.35 4370.36 ± 115.00
time (s) MST graph 3.62 ± 0.29 8.10 ± 0.36 22.48 ± 0.90 50.98 ± 2.57

Graph storage Full graph 10.66 ± 0.00 42.64 ± 0.01 266.47 ± 0.08 1065.89 ± 0.33
(MB) MST graph 0.96 ± 0.00 2.03 ± 0.00 5.22 ± 0.00 10.55 ± 0.00

Table 5. Total query cost. We report the computation cost of our pipeline at test time. Note, that these results only apply to the specific
setting where all pairs of a given set of shapes are queried and the graph G is precomputed. Under these circumstances, the MST graph
proves to be superior as its computation cost increases linearly O(N) in the number of shapes N . For pairwise matching at test time, or
when the graph G needs to be extracted on the fly, the advantages of MST are less prominent.

# pairs=102 1002 10002

102

104

106

Figure 7. Total training time We compare the total training time
per epoch of our approach to Deep Shells [21] for different training
set sizes on the SURREAL [61] dataset.

Query time We additionally compare the required cost
for querying our model. Aside from our main pipeline, we
also consider the sparse ‘MST’ graph type introduced in Ap-
pendix B. The resulting costs are summarized in Table 5. For
a given set of query shapes, one has to distinguish whether
the graph G is precomputed or needs to be predicted on the
fly. In the latter case, an additional cost of constructing the
graph is added, see the second row of Table 4. Notably, this
cost does not depend on the test graph topology. This also
means that the main computational advantages of the MST
graph are less prevalent when no offline graph precomputa-

tion is possible, e.g., for a pair of unseen test poses. When
the unseen pose is supposed to be added to an existing graph
in an online fashing, only N pairs between the old training
set and the new pose need to be computed. This, however,
again entails the same cost for either the full graph or MST.
On the other hand, MST is much faster for precomputed
graphs. Also, the storage cost of the MST graph is always
more efficient than the dense ‘full’ setting. This makes
sparse graph topologies relevant when memory is limited or
for very large training sets, since the required memory of the
full graph grows quadratically O(N2) with the number of
training shapes N = ∣S∣.

Comparison to [21] We show a comparison of the to-
tal training time per epoch to the baseline approach Deep
Shells [21] in Figure 7. The runtime of our approach is
on par with [21], while leading to significantly more accu-
rate correspondences, see Table 1. The comparison further
demonstrates that, in practice, the training time of both ap-
proaches increases quadratically in the number of training
shapes. Thus, they feasibly scale to a large training set of
1000

2 training pairs from the SURREAL [61] dataset.

D. Qualitative results
For a more complete picture, we provide several ad-

ditional qualitative comparisons. Figure 8 and Figure 9
show results corresponding to the benchmark comparisons
from Section 4.2 and Section 4.3 of the main paper.



Target UDM [10] DS [21] NM [20] SyNoRiM [26] Ours

Figure 8. Topological noise qualitative. We compare the quality of the predicted correspondences on three pairs from TOPKIDS [33],
corresponding to the quantitative results from Figure 3. All three pairs are corrupted by topological noise in places of self-contact, e.g.,
where the child’s arms touch its upper body or head.



Target DS [21] NM [20] SyNoRiM [26] Ours

Figure 9. Inter-class texture transfers. We assess the map smoothness of several baseline approaches, in comparison to our proposed
method. The five sample pairs are taken from the SMAL [65] test set corresponding to our benchmark comparison in Figure 5. In each case,
the obtained matches are visualized via a texture map.


