
Supplementary Material. EvShutter: Transforming Events for Unconstrained
Rolling Shutter Correction

1. Implementation Details
1.1. Training

We train the model by using the training set of the pro-
posed RS-ERGB dataset using an Adam optimizer [3] with
a batch size equal to 8 and a learning rate of 8e − 4. In
the case of the optical flow module, we set the learning rate
to 2e − 4. We use the ReduceLROnPlateau learning rate
scheduler with a patience of 10 epochs and an update fac-
tor of 0.5. We train the model for a total of 200 epochs,
which took approximately 24 hours on an NVIDIA V100.
We use the optical flow module proposed by [6] and fine-
tune it from their pre-trained weights.

To compare to other state-of-the-art methods on our
RS-ERGB dataset, we fine-tuned the image-based meth-
ods DSUN [4] and RSCD [10] starting from their publicly
available checkpoints for the Fastec-RS [4] dataset. We also
tried to fine-tune RSCD [10] starting from their BS-RSCD
checkpoint, but achieved worse results compared to start-
ing from the Fastec-RS checkpoint. For our comparisons
we used the weights obtained from finetuning on Fastec-
RS. For EvUnroll [11], we only initialize the weights of the
flow network from their checkpoint, which we then fine-
tuned on our dataset with the procedure described in their
paper. We were not able to make their flow network con-
verge when initialized from scratch. All the methods have
been trained using the training procedure and hyperparam-
eters as described in their respective papers.

1.2. Losses

We train our model with exception of the optical flow
network using a combination of the Charbonnier loss [1]
LC and the LPIPS loss [2] LP using the features from the
VGG-net [9].

LRS = LP + λ1LC (1)

We observed that training the optical flow network sepa-
rately leads to better overall performance. Therefore, dur-
ing training, we fine-tune the optical flow network in an
unsupervised way by warping the RS-image to the corre-
sponding GS-image, at each scale (1, 1/2 and 1/4), using
the predicted optical flow. As loss, we use a combination
of the Structural Similarity Metric (SSIM) [8] LSSIM and

Charbonnier loss [1] LC , which are averaged over all image
location at each each scale. The warping loss is then defined
as

Lflow =

3∑
s=1

λ2LSSIM,s + λ3LC,s (2)

with λ2 = 0.85 and λ3 = 0.15 respectively as in [6]. Dur-
ing the fine-tuning of the optical flow we do not propagate
the gradient of the other losses through the warped features.

1.3. Runtime and capacity

Tab. 1 shows the runtime and parameters comparison
for Rolling Shutter (RS) correction methods. Our algorithm
achieves the best runtime with 327 ms (more than two times
quicker than the second best method). On the other hand,
our method has more parameters than other methods, most
of them come from the Flow Net module (19.8 M), this
could be easily fixed by using a lighter module.

Method №Params [M]↓ Runtime [ms]↓
DeepUnrollNet [4] 18.6 2080
RSCD [10] 22.2 2822
EvUnroll [11] 27.5 783
Ours 36.0 327

Table 1. Comparison of model capacity and runtime on fHD
images (1920×1080) for RS correction methods. We measure
the runtime on NVIDIA V100 GPU. Shortest runtime and low-
est model capacity are shown in bold.

2. Ablation Study
Complementarity of synthesis and warping encoder.

In Tab. 2 we show the benefits of combining our synthesis
and warping encoders compared to versions of our algo-
rithm that uses either synthesis or warping for RS correc-
tion. The combination of the two encoders improves results
by 2.42 dB in PSNR and 0.0117 in LPIPS compared to a
purely warping-based approach and by 1.79 dB in PSNR
and 0.0357 in LPIPS compared to a purely synthesis-based
approach. This result shows that synthesis and warping en-
coders complement each other for the task of RS-correction.
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Besides taking care of image areas with brightness changes,
in the case of RS correction the synthesis module also helps
to fill occluded areas that can not be resolved by using just
the warping-based module relying on a single image.

Method PSNR [dB]↑ LPIPS↓ SSIM↑
Synthesis 29.79 0.1857 0.8668
Warping 29.16 0.1617 0.8828
Both 31.58 0.1500 0.8975

Table 2. Complementarity of synthesis and warping encoders
shown on validation set of RS-ERGB. The combination of synthe-
sis and warping encoder (in bold) boosts performance compared
to only using one of them.

Decoder improvements. Our fusion decoder shown in
Fig. 3 is inspired by [10], however we improved the orig-
inal version in two ways. First, we found that in the Fu-
sion Block, it is sub-optimal to place 1×1 convolution that
compresses features between SE and Deformable Convolu-
tion blocks, and instead place it after the Deformable Con-
volution block. We presume this is because the convolu-
tion mixes the features coming from different encoders and
precludes the Deformable Convolution block to perform
channel- and location-wise attenuation. In Tab. 3 we show
that our design, which we call Late Compression, boosts the
performance by 5.24dB in PSNR and 0.0453 in LPIPS com-
pared to the original design that we call Early Compression.
Furthermore, we found that adding the warped images Irs→
and the input RS-images Irs to the fusion decoder on all
scales improves the results by 2.59 dB in PSNR and 0.0154
in LPIPS as shown in Tab. 3. The shortcuts help the network
to recover static parts of the image without RS artifacts.

Method PSNR↑ LPIPS↓ SSIM↑
Position of 1×1 compressing convolution

Early Compression 28.04 0.1890 0.849
Late Compression (Ours) 33.28 0.1437 0.903

Multi-scale image shortcut connections
No image shortcuts 30.69 0.1591 0.881
Image shortcuts (Ours) 33.28 0.1437 0.903

Table 3. Fusion decoder architecture improvement ablations
on validation set of RS-ERGB. The late compression and image
shortcuts in the decoder (in bold) both give a boost in the perfor-
mance.

Visualization of FnF transformed events is shown in
Fig. 1. In this example the raw event stream E0→tH and
transformed events Egs→rs can be compared. It can be
seen that FnF transformed events only encode brightness
changes from GS to RS frame. For example, the filtered
event stream has no events in the middle row of the image
as mid-exposure of the latent GS image corresponds to mid-

exposure of the middle row of the RS image. Furthermore,
the polarity of events in the top half of the image is flipped.

Figure 1. Visualization of FnF transformed events. For better
illustration we only visualize a temporal slice of events.

3. Dataset and RS simulator
Recording setup shown in Fig. 2 consist in a 50R/50T

beamsplitter with a global shutter RGB Flir Blackfly S
1440x1080 and a Prophesee Gen4M 1280x720 event cam-
era. The two devices are hardware time synchronized: every
time the RGB camera starts and ends an exposure it sends
a trigger signal to the event camera that records the times-
tamps. Using this mechanism we can obtain the timing of
start and end of exposure in the event camera clock, which
we then use as reference.

Geometric alignment. To geometrically align events
and images we physically place the cameras to approxi-
mately intersect their optical axis to avoid parallax, adjust
focal length to match field of view and focus both cam-
era at the same distance. Next, we calibrate each cam-
era separately to estimate the lens distortion parameters

Figure 2. Data acquisition setup.



and focal lengths using images produced from events us-
ing E2VID [5]. After removing the lens distortion, we esti-
mate a homography that compensates for the misalignment
between events and images.

Dataset details. We collect 34 sequences, each 10 sec-
onds long, and set aside 22 sequences for training, 6 for val-
idation and 6 for test. For capturing data we used 500-2000
microseconds exposure, depending on lighting conditions.
Note that this exposure is significantly higher than 175 mi-
croseconds exposure used in Gev-RS [11] and it allows us
capturing images of higher quality. Our advance simula-
tion procedure, described below, allows generating frames
required for simulating realistic RS image with blur even
from low frame rate videos. We captured sequences that are
particularly challenging for a RS sensor such as fast moving
and rotating objects, fast panning or tilting motions of the
camera in scenes with varying depth.

Importance of adaptive interpolation in RS simula-
tor In Fig. 3 and Fig. 4 we show more comparisons of our
RS-simulator to a version without adaptive interpolation.
For the simulator with a fixed temporal upscale rate select-
ing appropriate upscale rate can be tricky since even single
scene often contains motion with different speed. Selecting
too low upscale rate leads to aliasing artifacts in simulated
RS images (e.g. fan), while selecting too high upscale rate is
prohibitively expensive. Our adaptive interpolation scheme
solves this issue and ensures a sufficiently high temporal
resolution regardless of the speed of the motion.

4. Qualitative comparison to SOTA
Fastec-RS. On the public Fastec-RS dataset, we only

compare our method qualitatively to the image based meth-
ods DSUN [4] and RSCD [10] as there is no public check-
points available for EvUnroll [11]. Examples are shown in
Fig. 5 and Fig. 6.

Data with real events and RS [11]. In Fig. 7, we show
additional comparisons on the dataset published in [11] with
real RS images and real events. Notice, that using the
method proposed in [11] but fine-tuned in our proposed
dataset, it improves the overall performance in real data.
Additionally, our model trained on the proposed RS-ERGB
dataset outperform the proposed method by [11] train on
their dataset and on RS-ERGB.

RS-ERGB. In Fig. 8 and Fig. 9, we show additional ex-
amples from the proposed RS-ERGB dataset and compare
our method to RSCD [10], DSUN [4] and EvUnroll [11].
All methods were fine-tuned on this dataset.



Short exposure Middle exposure Long exposure

Method with adaptive interpolation (ours).

Fixed interpolation factor.

Figure 3. Importance of adaptive interpolation in the proposed RS image simulator. Note that with fixed factor video interpolation it is
very hard to create realistic RS image with blur.



Short exposure Middle exposure Long exposure

Method with adaptive interpolation (ours).

Fixed interpolation factor.

Figure 4. Importance of adaptive interpolation in the proposed RS image simulator. Note that with fixed factor video interpolation it is
very hard to create realistic RS image with blur.



Input RS-image DSUN [4] RSCD [10] EvShutter (Ours) Ground truth

Figure 5. Comparisons on Fastec-RS dataset.



Input RS-image DSUN [4] RSCD [10] EvShutter (Ours) Ground truth

Figure 6. Comparisons on Fastec-RS dataset.



Input RS-image EvUnroll original [11] EvUnroll trained on RS-ERGB EvShutter (Ours)

Figure 7. Comparisons on data with real events and RS [11]. Note that this dataset does not have ground truth data.



Figure 8. Comparisons on RS-ERGB dataset.



Figure 9. Comparisons on RS-ERGB dataset.



Input blurry RS-image Ground truth global shutter

EvUnroll [11] deblurring result Our deblurring result using the flow based adaption of [7]

EvUnroll [11] deblurred and RS corrected EvShutter (Ours)

RSCD [10]

Figure 10. Comparison on RS-ERGB-Blur dataset.



Input blurry RS-image Ground truth global shutter

EvUnroll [11] deblurring result Our deblurring result using the flow based adaption of [7]

EvUnroll [11] deblurred and RS corrected EvShutter (Ours)

RSCD [10]

Figure 11. Comparison on RS-ERGB-Blur dataset.
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