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1. Dataset Details

Objects in ARCTIC: Figure 1 shows all 11 articulated ob-
jects in our dataset. Objects in ARCTIC consists of two
rigid parts that rotate about an axis. Each dash line in the
figure shows the articulation axis.
Marker sets: Figure 2 shows marker sets for an object,
the full human body, two hands, and the egocentric camera
along with the marker size. Markers in this visualization are
shown to scale. The marker locations for all objects and all
subjects can be found in the data release.
Dataset statistics: Table 1 shows the number of images
and the number of sequences per subject for our dataset.
The average sequence length is 698 frames (view-agnostic),
corresponding to 23.3 seconds. In total, we have 2.1M im-
ages and there are more than 200k images for most subjects.
Table 2 shows the number of images per object. All objects
have more than 170k images. To encourage different modes
of interaction, we capture different intents for each object:
“use” and “grasp”. Although both are for dexterous manip-
ulation, in the “use” sequences, the subjects are allowed to
articulate the object but not in the “grasp”. Since we focus
on studying articulation, we capture more “use” sequences.
Protocol splits: Table 3 shows the number of images and
subjects in the allocentric and the egocentric settings. Both
settings use the same subject split – 8 subjects for training, 1
for validation and 1 for testing. The allocentric setting uses
images from the 8 allocentric static views for training, val-
idation, and testing. The egocentric setting, in the training
split, we allow models to use images from all 9 views for
additional supervision; During inference, however, models
are evaluated with only egocentric images.
Depth images: Since we perform full-body capture, we can
render depth images with full-body interaction. Since most
existing articulated object datasets contain neither two-
hands nor human bodies [15, 16, 23], and having a human
in the scene is a realistic setting, we believe that ARCTIC
brings additional challenges of heavy occlusion and dy-
namic manipulation to the depth community. Figure 3
shows examples of the depth images and the corresponding
RGB images. The depth can be rendered with any synthetic
sensor noise model (e.g., Kinect, right).

Figure 1. ARCTIC objects. Each line shows the articulation axis.

Figure 2. Markers for motion capture (MoCap). We put 1.5mm
radius markers on objects, hands and the egocentric camera. For
the body, we use 4.5mm radius markers. The markers are shown
here to scale. Best viewed in color and zoomed-in.

Subjects S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Total
# Images 209k 224k 220k 212k 227k 228k 191k 280k 208k 135k 2.1M
# Seqs 34 37 38 31 34 36 29 42 37 21 339

Table 1. Number of images and sequences for each subject.
The average sequence length is 698 frames (view-agnostic), cor-
responding to 23.3 seconds.

Figure 3. Rendered depth images of human-object interaction.
(a) Rendered depth images of our 3D data, and the corresponding
RGB images, and (b) depth images with synthetic kinect noise.
Best viewed zoomed-in. For better depth-map visualization we do
not render the floor here.



Objects Notebook Box Espresso machine Waffle iron Laptop Phone Capsule machine Mixer Ketchup bottle Scissors Microwave Total
Use 163k 152k 141k 166k 171k 159k 159k 156k 138k 128k 144k 1.7M

Grasp 27k 36k 46k 41k 40k 49k 37k 47k 51k 44k 43k 0.4M
Total 190k 187k 187k 207k 211k 208k 196k 202k 189k 172k 186k 2.1M

Table 2. Number of images for each object in ARCTIC. In ARCTIC, we focus on studying hand interaction with object articulation.
Therefore, we capture more “use” sequences in which subjects can articulate the object. To encourage different modes of interaction, we
also ask subjects to “grasp” the objects without articulating the objects. Since we focus on object articulation, we capture more data for
“use” than in “grasp”.

Figure 4. Our capture system with 54 high-resolution MoCap cameras. (a) MoCap system in a side view and a bird-eye view,
illustrating the 54 MoCap cameras used to eliminate occlusion during the capture. (b) Observed markers for a captured frame, showing
markers tracking the full human body with hands, the object (notebook in this case), the egocentric camera, and props such as the table.
Best viewed in color and zoomed in.

Splits # Train Images # Val Images # Test Images
allo 1.5M 202k 195k
ego 1.7M 25k 24k

Table 3. Number of images for each protocol.

2. Data Capture Details
2.1. MoCap System with 54 Cameras

Figure 4 illustrates our MoCap system. When capturing
quality hand-object interaction data, the key is to eliminate
occlusion in hand self-occlusion, hand-hand occlusion, and
hand-object occlusion settings. To minimize these sources
of occlusion, we use 54 high-resolution MoCap cameras
during our capture. The camera positions and orientations
are shown in Fig. 4a in a side view and a bird-eye view. We
also show the markers tracked by our system in Fig. 4b. The
system tracks markers on the egocentric camera, the human
subject (full body with hands), the articulated object (note-
book in this case), and props such as the table.

2.2. Creating Personalized Template

To create a personalized full body-and-hand template
mesh for each subject, we obtain 3D scans of the subjects in
varying poses using a 3dMD scanner [22]. We then register
the SMPL-X model to the scans to obtain aligned meshes.
The registered SMPL-X meshes are unposed to a canoni-

cal T-Pose. We perform a SMPL-X model-based fitting to
the unposed meshes using vertex-to-vertex distances with
the SMPL-X vertex correspondences. Fitting with multiple
T-Posed meshes allows us to filter out potential noise, and
to capture the occluded regions of the body and hands, re-
sulting in a reliable personalized SMPL-X template for each
subject.

2.3. Estimating Rotation Axis and Articulated Pose

To solve for the rotation axis of each articulated object,
we attach markers on each rigid part of each object and cap-
ture a calibration MoCap sequence by articulating its two
parts. Since the two parts rotate about an axis, the trajec-
tory of each marker follows a circle on a 2D plane. We
solve for the center of each circle using least-squares, and
fit a 3D line through the centers to obtain an initial rotation
axis estimate. We then refine the rotation axis estimate by
minimizing a cost function.

Formally, let Xi
t ∈ IR3 denote the 3D position of a

marker i at time step t placed on the “top” part of the ob-
ject (e.g., the lid of the ketchup bottle); Y j

t ∈ IR3 denotes a
marker j on the “bottom” part of the object (e.g., the main
body of the ketchup bottle) at time t. We pick a frame t0
corresponding to a pre-defined rest pose for each object (for
example, a frame in which the lid of the ketchup bottle is
closed). We then transform the MoCap sequence {Xi

t}i,t
and {Y j

t }j,t into a canonical sequence {X̄i
t}i,t and {Ȳ j

t }j,t



via a rigid transformation (R, T ) such that Ȳ j
t = Y j

t0 for
all t and j. After the canonicalization, the markers on the
bottom part of the object are stationary across the entire se-
quence, and the top markers rotate around an axis. Fur-
ther, the trajectory of each marker is a circle on a 2D plane.
We fit a circle to the trajectory {X̄i

t}t=1,··· ,N of an arbi-
trary marker i using least-squares, and convert the 2D cir-
cle center to the 3D space (xi, yi, zi). We then fit a 3D
line (v, v0) to the center of each circle {(xi, yi, zi)}i in 3D,
where v ∈ IR3 is a unit directional vector for the line and
v0 ∈ IR3 is an arbitrary anchor point that the line crosses.
Since fitting a 3D line to 3D centers can be imprecise, we
refine the rotation axis further by minimizing the following
cost function

(v∗, v∗0 , ω
∗
t=1,··· ,N ) = argmin

v,v0,ωt=1,··· ,N

∑
i ||X̄i

t − f(X̄i
t0 |v, v0, ωt)||22

(1)
where N is the number of frames in a sequence; ω∗

t=1,··· ,N
are the articulation angles in radians for all the frames rel-
ative to the rest pose. The quantities v∗, v∗0 are the refined
rotation axis for the object. The function f(X̄i

t0 |v, v0, ωt)
rotates {X̄i

t} about the estimated axis (v∗, v∗0) by ωt, the
amount of articulation. This ensures that the estimated ro-
tation axis is consistent with the marker trajectory in the
MoCap data.

To define the articulated object pose, we need to estimate
the 1D articulation angle, and its 6D rigid pose. To compute
the former, after the rotation axis (v∗, v∗0) is estimated, for
an actual MoCap sequence, the articulation angles are ob-
tained by performing a 2D projection of the 3D marker posi-
tions along the rotation axis. Since the 2D projection lies on
a circle, the articulation angle can be estimated arithmeti-
cally. The articulation angle is measured relative to each
object’s rest pose defined in t0 during the rotation axis esti-
mation step. We take the median of the articulation angles
estimated from all markers at a time step as our ground-
truth articulation angle. Finally, to define the articulated
object pose, we also need the 6D object pose for its orien-
tation and translation. To solve for the 6D pose (Rt, Tt) for
a frame t, we compute the rigid transformation from Ȳt0 to
Yt. In other words, we compute the 6D pose using the base
marker according to its correspondence from the canonical
space to the MoCap space.

2.4. Computing Hand-Object Binary Contact

We consider the two hands and the two parts of each ar-
ticulated object as four watertight meshes for computing
ground-truth binary contact labels. Given one mesh from
the hands and one mesh from the object parts, we follow
GRAB [21] to compute vertex-level contact. The main idea
in GRAB is to label vertices on a mesh as in contact with
another mesh based on two cases: “contact under-shooting”
and “contact over-shooting”. When vertices on a mesh are

Hand Branch
Nr. Module Details
1 pool AvgPool2d(output size=1)
2 cam init Linear(in dim=2048, out dim=512, bias=True)
3 cam init ReLU()
4 cam init Linear(in dim=512, out dim=512, bias=True)
5 cam init ReLU()
6 cam init Linear(in dim=512, out dim=3, bias=True)
7 refine.fwd Concat([“feat”, “hand pose”, “cam”, “shape”])
8 refine.fwd Linear(in dim=2157, out dim=1024, bias=True)
9 refine.fwd ReLU()
10 refine.fwd Dropout(p=0.5)
11 refine.fwd Linear(in dim=1024, out dim=1024, bias=True)
12 refine.fwd ReLU()
13 refine.fwd Dropout(p=0.5)
14 refine.decode.pose 6d Linear(in dim=1024, out dim=96, bias=True)
15 refine.decode.shape Linear(in dim=1024, out dim=10, bias=True)
16 refine.decode.cam Linear(in dim=1024, out dim=3, bias=True)

Object Branch
1 pool AvgPool2d(output size=1)
2 cam init Linear(in dim=2048, out dim=512, bias=True)
3 cam init ReLU()
4 cam init Linear(in dim=512, out dim=512, bias=True)
5 cam init ReLU()
6 cam init Linear(in dim=512, out dim=3, bias=True)
7 refine.fwd Concat([“feat”, “rot”, “cam”, “arti”])
8 refine.fwd Linear(in dim=2055, out dim=1024, bias=True)
9 refine.fwd ReLU()
10 refine.fwd Dropout(p=0.5)
11 refine.fwd Linear(in dim=1024, out dim=1024, bias=True)
12 refine.fwd ReLU()
13 refine.fwd Dropout(p=0.5)
14 refine.decode.rot Linear(in dim=1024, out dim=3, bias=True)
15 refine.decode.cam Linear(in dim=1024, out dim=3, bias=True)
16 refine.decode.arti Linear(in dim=1024, out dim=1, bias=True)

Table 4. Details of the decoder in ArcticNet-SF.

not inside another mesh, it is considered “under-shooting”,
and geometric proximity is used to label contact. When
there is interpenetration between two meshes, for example,
the thumb goes through a thin structure, the vertices of the
thumb that “over-shoot” the thin structure are labeled as in
contact as well as the vertices that are inside the structure.
For more details, we refer readers to [21].

3. Model Details and Results
General implementation details: For all experiments,
we use a ResNet-50 [19] backbone pre-trained on Ima-
geNet [2]. The models are trained with the Adam opti-
mizer [11] using a learning rate of 1e−5. For visibility, we
crop each image around a square region centered around the
object and resize the image to 224 × 224. Data augmenta-
tion is applied to the input image: rotation (±30◦), scaling
(±25%), and color jittering (±40%).

3.1. ArcticNet

ArcticNet-SF Architecture: We show the details of
ArcticNet-SF in Table 4. ArcticNet-SF uses an encoder-
decoder architecture. Given an input image, we use aver-
age pooling to obtain a single image feature vector with
dimension 2048 from the backbone. The image feature



vector is used to predict the initial camera parameters (in
“cam init”). Following [10], we use an iterative refinement
scheme to predict parameters of the hands and the objects.
First, we initialize all parameters to zero except for the cam-
era parameters, which we initialize with the prediction in
“cam init”. For the hand branch, we concatenate the im-
age feature vector, the initial hand poses, the hand shape
vector into a single vector, and the predicted camera pa-
rameters for refinement (Line 7-16). Within the refinement
step, we first predict a latent vector using an MLP (Line
7-13). The latent vector is then being decoded via differ-
ent heads to the residuals for MANO joint angles, shape
and camera parameters (Line 14-16). The decoded resid-
uals are added to the current estimates of the parameters
respectively and will be used as inputs for the next refine-
ment step (Line 7-16 again). We have two iterations for
the refinement. The object branch has a similar refinement
scheme, but instead it predicts the object rotation, camera
parameters, and object articulation. Following [13, 14], we
use the 6D rotation representation in [27] for MANO joint
angles. Following [1, 10, 13, 18, 25], for the predicted weak
perspective camera parameters, we use a fixed focal length
of 1000.0 and convert them to translations for each entity in
the scene.
ArcticNet-LSTM Architecture: The LSTM model takes
in a moving window of images and estimates 3D meshes for
each frame. We use the same structure as ArcticNet-SF ex-
cept that the image features within each window are passed
through an LSTM network before being decoded. We use a
bidirectional LSTM with two hidden layers, hidden dimen-
sion of 1024, and a window size of 11 based on validation.
Training losses: For each frame, our loss L is defined as
the sum of the left hand, right hand, object, and interaction
losses: L = Ll + Lr + Lo + Lint. In particular, the hand
losses are defined as

Lh = λh
3DLh

3D + λh
2DLh

2D + λh
ΘLh

Θ + λh
TLh

T , (2)

where h = {l, r} denotes the handedness. We fully su-
pervise the 3D joints (after subtracting the roots), the 2D
re-projection of the predicted 3D joints, the MANO pose
and shape parameters and the weak-perspective camera pa-
rameters. Similarly, we pre-define 3D landmarks for objects
using farthest point sampling [4, 5] on the object mesh. Us-
ing these landmarks, we formulate the object losses as

Lo = λo
3DLo

3D+λo
2DLo

2D+λωLω +λRLR+λo
TLo

T , (3)

where Lω , LR and Lo
T supervise the articulation angle in ra-

dians, the global orientation and the weak perspective cam-
era parameters. For the interaction loss Lint, we use the
contact deviation (CDev) metric (see main paper) as a loss
term to improve hand-object contact. We apply this loss be-
tween the left-hand/object, and right-hand/object. The loss

Lint is a sum of the two. All losses above use the MSE cri-
terion. All λ variables are hyper-parameters and are set em-
pirically based on validation performance. In particular, we
set all λs to 1.0 except λ∗

3D = 5.0, λh
2D = 5.0, λh

Θ = 10.0,
λh
β = 0.001 where ∗ denote a hand or an object.

Training details: We train with a batch size of 64. For
the allocentric setting, we train single-frame models for
20 epochs. Since training temporal model is computation
intensive, following VIBE [12], we dump image features
of pre-trained single-frame models to disk then train the
LSTM models directly on the image features for 10 epochs.
For the egocentric setting, since a model has access to both
allocentric and egocentric images during training, to speed
up training, we finetune pre-trained allocentric models on
egocentric training images (1 camera) for 50 epochs.
Camera model: Following previous work on body and
hand surface reconstruction [1, 10, 13, 14, 18, 25], to esti-
mate the translation of hands and objects (Tl, Tr, To), we
predict weak-perspective camera parameters (s, tx, ty) for
each entity in the scene. The camera parameters consist of
the scale s ∈ IR and translation (tx, ty) ∈ IR2 in pixel space
and the translation can be recovered from (s, tx, ty) [13,14]
via:

T = (tx, ty,
2f

ws
) ∈ IR3. (4)

The terms w and f are the patch size and the focal length.
We do this for each (Tl, Tr, To).
Qualitative Results: Figure 5 shows the predictions of
ArcticNet-SF and ArcticNet-LSTM on the test set. As
shown in the quantitative results in the main manuscript,
the ArcticNet-LSTM model has lower errors overall for its
prediction and it has better contact. This is consistent with
the observations in the qualitative examples here. We hy-
pothesize that this is because the LSTM allows the network
to jointly reason between the motions of hands and objects.

3.2. InterField

InterField-SF Architecture: Table 5 details our InterField
model. As an example, we illustrate how the right hand in-
teraction field is predicted. The left hand, and the object
are predicted in a similar way. In particular, from an input
image, we obtain a 2048-dimensional image feature vec-
tor from the image backbone. The vector is passed through
an MLP and is projected to lower dimension for computa-
tional efficiency (Line 1-4). We use subsampled vertices of
the hand, and concatenate the 3D location of each vertex
of the subsampled hand in the canonical pose with the 512-
dimensional image feature vector, resulting a point cloud
with 515 dimensions. The point cloud is passed through a
PointNet backbone to obtain a latent point cloud with 512
dimensions (Line 5-11). Within the PointNet backbone, the
515-dimensional input point cloud is passed through a se-
quence of layers to produce lower level point features (Line



Figure 5. Qualitative results of ArcticNet-SF and ArcticNet-LSTM. Best viewed in color and zoomed in.

Nr. Module Details
1 img feat.down Linear(in dim=2048, out dim=512, bias=True)
2 img feat.down ReLU()
3 img feat.down Linear(in dim=512, out dim=512, bias=True)
4 img feat.down ReLU()
5 pointnet.shadow Linear(in dim=515, out dim=512, bias=True)
6 pointnet.shadow BatchNorm1d(512, affine=True)
7 pointnet.deep Linear(in dim=515, out dim=512, bias=True)
8 pointnet.deep BatchNorm1d(512, affine=True)
9 pointnet.deep ReLU()

10 pointnet.deep Linear(in dim=515, out dim=512, bias=True)
11 pointnet.deep BatchNorm1d(512, affine=True)
12 regressor Linear(in dim=1024, out dim=512, bias=True)
13 regressor BatchNorm1d(512, affine=True)
14 regressor ReLU()
15 regressor Linear(in dim=512, out dim=128, bias=True)
16 regressor BatchNorm1d(128, affine=True)
17 regressor ReLU()
18 regressor Linear(in dim=128, out dim=1, bias=True)
19 upsample Linear(in dim=195, out dim=778, bias=True)

Table 5. Details of InterField-SF architecture.

5-6). The point features are further processed through Line
7-11. We then concatenate the point cloud from the shallow
layers (output of Line 6) and the deeper layers (output of
Line 11) along the feature dimension, resulting in a point
cloud whose individual points are in 1024-dimensional. A
regressor maps each point (1024-dimensional) to a single
scalar for distance prediction (Line 12-18). Finally, we
upsample the subsampled distances to the full hand mesh
(Line 19). We predict the interaction field of the left hand
and the object in the same way. All entities shared the same
image and PointNet backbones.
InterField-LSTM Architecture: The LSTM model takes
in images from a window and estimates the interaction field
for each frame. In particular, we use the same architec-
ture as in ArcticNet-SF except that we pass the image fea-
tures in a window to an LSTM network before regressing
the distances. We use a bidirectional LSTM with two hid-
den layers, hidden dimension of 1024 and a window size of
11 based on validation performance.
Training details: For each frame, the network outputs are
F̂ l→o, F̂ r→o, F̂ o→l, and F̂ o→r. To supervise training, we
extract the ground-truth interaction fields for each frame

from ARCTIC and formulate an L1 loss L = LF (l, o) +
LF (r, o)+LF (o, l)+LF (o, r) where LF (a, b) = ||F a→b−
F̂ a→b||1 for entities a and b. For tractability and focus
on close interaction, we threshold the interaction field dis-
tances at 10cm for training and evaluation.

We train with a batch size of 64 for single-frame mod-
els and 32 for LSTM models. For the allocentric setting,
we train single-frame models for 20 epochs. Since training
temporal model has high computational requirements, fol-
lowing [12], we dump image features of pre-trained single-
frame networks to disk and train the LSTM models on the
image features for 6 epochs. For the egocentric setting, a
model has access to both allocentric and egocentric images
in the training set. To speed up training, we finetune pre-
trained allocentric models on egocentric images (1 camera)
for 100 epochs and 50 epochs for single-frame and LSTM
models respectively.
Qualitative Results: Figure 9 shows the predictions of the
single-frame model, and the corresponding ground-truth.
We use ground-truth hand and object poses for visualization
purposes. They are not the inputs of our network. Here we
focus on the colors on the meshes; Brighter colors represent
closer distances in the interaction fields. The figure shows
the feasibility of the task because the predictions correlate
well with the ground-truth.

4. Metrics and Experiments

4.1. Metric Details

Acceleration Error (ACC): Following [12], we report ac-
celeration error in m/s2 to measure the smoothness of con-
sistent motion reconstruction, and interaction field estima-
tion. Formally, suppose ĥt

i ∈ IRd is the predicted vertex
(or distance value) i at frame t of a hand; ht

i is the cor-
responding ground-truth. We compute the corresponding
acceleration vector ût

i ∈ IRd of ĥt
i. Similarly, we compute

the acceleration vector ut
i for the ground-truth. The accel-

eration error for a hand is computed as:

1

TVh

T∑
t=1

Vh∑
i=1

∥∥ût
i − ut

i

∥∥ (5)



Contact and Relative Position Motion Hand Object
Object CDevho [mm] ↓ MRRPErl/ro [mm] ↓ MDevho [mm] ↓ ACCh/o [m/s2] ↓ MPJPEh [mm] ↓ AAE [◦] ↓ Success Rate [%] ↑

Notebook 37.4 47.7/39.8 9.9 5.0/6.5 20.8 3.3 80.4
Box 47.5 66.3/49.2 10.6 5.5/6.7 24.5 1.3 88.2

Espresso machine 48.9 52.5/46.2 9.5 4.8/5.0 24.5 11.0 81.0
Waffle iron 41.8 43.3/39.0 14.6 5.6/7.9 21.3 3.1 74.0

Laptop 42.6 54.7/40.5 12.8 5.2/7.2 21.7 1.7 84.4
Phone 29.5 42.2/31.1 7.5 4.6/7.2 18.8 3.9 62.3

Capsule Machine 30.5 37.6/30.9 7.8 4.7/4.4 19.2 6.9 69.3
Mixer 34.5 41.2/33.9 8.6 4.8/5.3 21.3 2.6 78.3

Ketchup bottle 33.0 45.6/35.0 10.8 5.4/7.4 20.7 7.0 59.2
Scissors 25.6 39.7/22.2 5.8 4.1/5.0 17.7 10.5 50.1

Microwave 60.8 62.6/41.9 9.3 5.2/5.2 26.0 7.3 74.3

Table 6. Detailed breakdown on test set evaluation per object. Here we provide the detailed breakdown of the test set evaluation
according to each object. For each metric, we use red to denote the object with the highest error; we use blue to denote the lowest error.

Origin

(a) Predicted and ground-truth
roots of entities a and b

(b) MRRPE for entities a and b

Figure 6. An illustration of the MRRPEa→b metric. (a) The
predicted roots of entities a and b are denoted by Ĵa

0 and Ĵb
0, and

Ja
0 and Jb

0 are the corresponding ground-truth. (b) Subtract a by
b; MRRPEa→b ∈ IR is indicated by the dash line.

where Vh, T , d are the number of hand vertices, the se-
quence length, and the number of dimension for the predic-
tion of a task. To compute the acceleration, we use centered
difference:

ut
i =

ht−1
i − 2ht

i + ht+1
i

w2
(6)

where w = 1/30s is the stencil width of 30-FPS videos.
Note that previous methods [12, 28] computing the acceler-
ation errors did not divide the error by w2, leading to signif-
icantly smaller errors. The prediction dimension (d) for the
reconstruction task, and the interaction field task are 3 and
1 respectively. For the former, we use root-relative vertices.
We compute the acceleration of the object in the same way.
Average Articulation Error (AAE): Suppose ωt ∈ IR and
ω̂t ∈ IR are the predicted and ground-truth object articula-
tion at frame t, the average articulation error is defined as

1

T

T∑
t=1

|ωt − ω̂t| (7)

where T is the number of frames.

Contact and Relative Position Motion Hand Object
Size CDevho MRRPErl/ro MDevho ACCh/o MPJPEh AAE Success R.

5 39.9 48.0/37.4 9.3 6.2/8.2 23.3 6.1 72.7
11 39.0 47.0/36.6 8.8 6.1/7.7 22.8 5.8 74.6
15 39.7 47.8/36.8 9.0 6.2/7.6 22.9 5.8 74.4

Table 7. Effects of window size on ArcticNet-LSTM. Here we
ablate the effect of window size on our model on the validation set.

Contact and Relative Position Motion Hand Object
CDev loss CDevho MRRPErl/ro MDevho ACCh/o MPJPEh AAE Success R.

✗ 49.0 53.1/45.6 11.9 7.3/10.1 23.0 6.1 71.3
✓ 41.9 50.1/37.6 10.4 7.3/9.8 23.1 5.9 71.8

Table 8. Effects of contact deviation (CDev) as a training loss.
Here we ablate the effect of the contact deviation metric as a loss
on ArcticNet-SF on the validation set.

Mean Relative-Root Position Error (MRRPE): Follow-
ing [6, 17], to measure the relative root translation between
two entities a and b in the scene (a hand or an object),

MRRPEa→b =
∥∥∥(Ja

0 − Jb
0

)
−
(
Ĵa
0 − Ĵb

0

)∥∥∥
2

, (8)

where a ∈ {l, r, o} and b ∈ {l, r, o} and l, r, o denote the
left hand, right hand, and the object, J0 ∈ IR3 is the ground-
truth root joint location and Ĵ0 the predicted one. Figure 6
shows a visualization of the metric. Suppose we want to
compute MRRPEa→b, and Ĵa

0 and Ĵb
0 denote the predicted

roots for entities a and b and the notations without “hat” are
the ground-truth. The MRRPE value is the distance indi-
cated in the dash line.

4.2. Ablation and Analysis

Detailed analysis on test set: To see a performance
breakdown per object, Table 6 shows the evaluation of the
ArcticNet-LSTM model evaluated on the test set of the allo-
centric split. We use red to denote with the worst value for
each metric and blue to denote the best value. We can see
that the microwave is the hardest object in terms of hand re-
construction (see MPJPE) and contact (see CDevho). This



Figure 7. Changes in hand poses after first contact.

is because when opening the microwave door, the fingers
are often heavily occluded. In contrast, the scissors has the
lowest hand reconstruction error because it is a small object.
In terms of estimating the articulation angle, the box, how-
ever, has the smallest error (see AAE). We hypothesize that
the articulation angle is easy to observe because the box is
the largest object. In contrast, the espresso machine has a
small handle, which can be occluded heavily, so it has the
highest AAE error. Finally, the scissors is the hardest ob-
ject to reconstruct its pose (see success rate) because it is a
small object and in some view its dark texture is similar to
the background color.
Window size for ArcticNet-LSTM: Table 7 shows the ef-
fect of window size on ArcticNet-LSTM in the validation
set. With more frames in a window, overall the model has
better performance. To balance performance and efficiency,
we use a window size of 11 for our model.
Contact deviation (CDev) as training loss: Table 8 shows
the effect of the contact deviation metric as a training loss
to encourage hand-object contact using the allocentric pro-
tocol. The results are evaluated on the validation set. In this
ablation, we train the ArcticNet-SF by turning on and off
the contact deviation loss. The loss is applied between left-
hand/object, and right-hand/object as described in Sec. 3.
Results show that the CDev loss improves hand-object con-
tact indicated by the CDevho metric.
Number of views for ArcticNet-SF: Since ARCTIC has
only 1 egocentric view, we ablate the effect of the num-
ber of allocentric views. When trained with 2, 4, 6, 8
views, randomly selected, MPJPEs for hands are 49.0mm,
35.0mm, 25.8mm, 23.4mm; the object success rates are
40.8%, 57.0%, 62.1%, 68.6% on the validation set.
Quantifying dexterous motion: Existing datasets do not
show significant changes in hand pose. In particular,
poses in ContactPose are fixed relative to the object while
DexYCB poses do not change much once contact is estab-

Figure 8. Interaction field estimation on HO3D

lished (see Fig. 7). The figure plots the relative change in
3D joints across consecutive frames, without global transla-
tion and rotation. The vertical dashed line indicates the first
contact. Fig. 2 (main paper) shows that ARCTIC has more
diversity in hand poses and contact patterns, resulting from
dexterous manipulation, compared to other datasets.
Interaction field estimation on HO3D: Our proposed task
can be applied to existing hand datasets with rigid objects.
To show this, we trained InterField-SF on HO3D. Fig. 8
shows qualitative results. However, we note that exist-
ing hand-object datasets have similar hand poses within
each sequence (thus, similar contact) and fewer training im-
ages, which are easy to overfit to (see Fig. 8 failure case);
ARCTIC is large-scale and it is more challenging due to
more dynamic interaction (changing poses and contact) and
thus will help in fostering future research.
Improve hand and rigid objects with ARCTIC: We pre-
train ArcticNet on ARCTIC, finetune on HO3D (hand +
rigid objects). This model is compared to a model trained
only on HO3D. Following the HO3D protocol, pre-training
on ARCTIC improves MPJPE (scale-translation aligned)
errors by 9.2%. For the object, the vertex-to-vertex error
(root aligned) improves by 7.1%. This shows that articu-
lated hand-object data benefits hand and rigid object recon-
struction.

5. Visualizing ARCTIC

To visualize the our 3D annotation in the dataset, Fig. 10
shows random samples of the 3D meshes of hands and ob-
jects overlaid on the images in our ARCTIC dataset. See
the video on our project page for our rendered sequences.

6. Discussions and Limitations

We introduce ARCTIC, the first dataset for two hands
dexterously manipulating articulated objects and baselines
for the task of consistent motion reconstruction, and inter-
action field estimation. Being a first step, our work is not
without limitations.
Known object models in ArcticNet: Similar to existing
methods [3, 8, 9, 24], one limitation of our baselines is that
they assume known object models. We view articulated 3D
shape estimation of unknown objects as an orthogonal prob-
lem on which the field is making progress. Now that we



have showed the feasibility of inferring hand-object inter-
action for such objects, future work should bring together
our method with 3D articulated object inference. This is
challenging and we believe it is critical to make progress on
sub-problems, for which ARCTIC can be leveraged.
Toy objects: Some of our objects are toys, which are not
to scale and lack some of the visual complexity of real ob-
jects. However, the aim of ARCTIC is to study the physical
dynamics between hand-object motions.
SMPL-X for capturing contact: Since we use SMPL-
X/MANO as our human representation, the human geome-
try does not capture skin deformation during contact. While
a deformable human body/hand model would be ideal for
capturing true contact, developing such models is not a goal
of ARCTIC. Further, marker and image data ARCTIC can
be used to fit a deformable model if developed. Our 3D an-
notation and contact capture pipeline follows GRAB [21].
In particular, we use MoSh++ to fit SMPL-X to the markers,
producing highly accurate fits. We adapt the contact capture
pipeline from GRAB. GRAB contact labels are widely used
in the community to support projects such as [7, 20, 26].
Markers on hands in our RGB images: We use optical
marker-based capture to provide accurate hand and object
poses, thus potentially introducing label noise. However,
our hand markers are minimally intrusive (1.5mm in radius)
and barely visible when images are resized for inputs.
Degree of freedom in our objects: We construct ARCTIC
with objects of 1 DoF. This is because many items designed
for human interaction often have a single axis of rotation as
they are easy to produce and intuitive to manipulate (e.g.,
doors, refrigerators, ovens, pliers, etc.). Thus, objects in
ARCTIC are representative of a broad class of objects found
in homes and businesses. Importantly, reconstructing inter-
action with such objects involves occlusion, depth ambigu-
ity, and contact estimation. These issues also apply to ob-
jects with more DoF. Further, we capture more diverse hand
poses and more challenging hand-object interactions com-
pared to existing hand-object datasets. Future work should
expand the number and complexity of objects to further
study the problems of depth ambiguity and occlusion.
Approval for human subject data: Subject data was col-
lected with written, prior, informed consent and the data
collection was reviewed by the university ethics board.
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