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Abstract

In this supplementary material, we first introduce the
network details of the joint appearance and motion decoder.
Afterward, we provide more experimental results based on
the real BS-RSC dataset [3]. We also include a video demo
to present the rolling shutter correction results on consecu-
tive sequences. Finally, we provide additional visual analy-
sis of the intermediate processes and ablation experiments,
followed by a discussion of the limitations of our method.

1. Network Details

To facilitate the overall understanding of the proposed
joint learning mechanism, we do not show too many inter-
mediate variables in Fig. 3 and Eq. 2 in the main text. Next,
to better understand the intermediate computational process
of our joint appearance and motion decoder, without loss of
generality, we take the fourth level as an example for illus-
tration, as shown in Fig. S1. Specifically, we describe in
detail the computational process of equations
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Note that the tilde is used to represent the direct prediction
of the current level, which is then upsampled for computa-
tion of the next level. For example, G̃5 denotes the syn-
thesized GS candidate at level 5, which is bilinearly up-
sampled to G4 such that the joint learning is performed at
level 4. And for network training, we supervise the bilat-
eral undistortion fields U4

g→0, U4
g→1, the warping-based GS

candidates F̂ 4
0 , F̂ 4

1 , and the synthesized GS candidate G̃4 in
Eq. (1). More specific details can be found in our code at
https://github.com/GitCVfb/JAMNet.
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2. Additional Experimental Results
In this section, we show more quantitative experimental

results on GS image recovery, intermediate processes, and
ablation experiments.

2.1. Visual results of GS image recovery

We report more real-world rolling shutter correction re-
sults in Fig. S3 and Fig. S4 by comparing with the off-the-
shelf rolling shutter correction (RSC) algorithms, including
AdaRSC [3], DeepUnrollNet [10], JCD [15], and SUNet
[4]. As marked by the box, we can see that our JAMNet
consistently outperforms the competing methods in visual
appearance, successfully recovering higher-fidelity global
shutter images with fewer artifacts and richer details. This
is mainly attributed to the design of our single-stage archi-
tecture with joint appearance and motion learning. More-
over, we attach a supplementary video demo video.mp4 to
demonstrate the RSC results on consecutive RS video se-
quences (e.g., Scenes 51, 54, 65 of the BS-RSC test set [3],
involving noticeable RS artifacts).

2.2. Visualization of intermediate processes

As depicted in Fig. S5, we provide visual results of the
intermediate process of our proposed JAMNet, including
intermediate flows and warping-based GS candidates. As
shown by the blue circles, there are different degrees of
occlusion between the RS images and the target GS im-
age, so simply warping one RS image leads to a significant
lack of image content (see red circles). Our single-stage
framework learns image appearance and pixel motion in-
formation simultaneously, and thus can adaptively and ef-
ficiently reason about complex occlusions to generate vi-
sually more satisfying RS correction results. Although we
do not impose labeled auxiliary supervision (e.g. distilla-
tion loss [8, 11]) on the intermediate flows, thanks to our
proposed joint learning mechanism, our baseline is capable
of estimating a plausible bilateral undistortion field that bet-
ter maintains the scanline-dependent property. In summary,
by learning in a collaborative manner, the complementary
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Figure S1. Decoder details at level 4. After upsampling the predictions Ũ5
g→0, Ũ5

g→1, h̃5, and G̃5 from the previous level, we obtain U4
g→0,

U4
g→1, h4, and G4. Subsequently, in the warping branch, U4

g→0 and U4
g→1 are used to warp the feature map to obtain two warping-based

GS candidates F̂ 4
0 , F̂ 4

1 . Finally, U4
g→0, U4

g→1, F̂ 4
0 , F̂ 4

1 , h4, and G4 are cascaded and fed into three residual blocks to output the predictions
Ũ4

g→0, Ũ4
g→1, h̃4, and G̃4 for the current level in a joint learning manner. Note that inspired by [9, 13], the flow residual connections from

U4
g→0, U4

g→1 are used to recover Ũ4
g→0, Ũ4

g→1. The whole process is optimized in an L-layer pyramid from coarse to fine, progressively
obtaining the final GS image G̃1 with the same resolution as the input.

motion estimation and appearance recovery in the RSC task
can benefit each other. On top of combining the advantages
of occlusion inference and context aggregation, our method
finally recovers a photo-realistic GS image effectively.

2.3. Visualization of ablation experiments

In Table 3 of the main text, we show the quantitative re-
sults of the ablation experiments. To better understand the
utility of each component, we visualize some representa-
tive ablation results in Fig. S6. “No synthesis” and “No
warping” indicate that the synthesis branch and the warping
branch are removed in the decoder, respectively. “No hid-
den” and “No Lmc” represent the removal of hidden state
and multi-scale consistency loss, respectively. TMEM de-
notes the transformer-based motion embedding module and
DA is the proposed data augmentation strategy. It can be
seen that the removal of these components leads to different
degrees of visual degradation in the recovered GS image,
such as blurring artifacts and missing details at the pant legs
and human faces. In contrast, our full model can recon-
struct a higher-quality GS image faithfully, where sharper
and richer image details are retained.

3. Limitation and Discussion
The RSC model is trained based on a specific readout

time ratio [16], which makes it less effective to generalize to

RS data with large readout bias. This is a common problem
for learning-based RSC methods [3,4,10,15], as pointed out
in [3, 5, 14]; while traditional RSC methods [6, 12, 16, 17]
rely on non-trivial readout calibration to solve it. The de-
velopment of RSC methods that are robust to readout time
ratios will be an attractive future topic. In addition, our
method may suffer from inaccurate local details when en-
countering low-texture or narrow objects. We show visual
results of two sets of failure cases in Fig. S2, where artifacts
appear in the thin white pillars and the rear seam of the car.
We reckon this is because motion estimation is relatively
more difficult in these challenging narrow image regions,
which may easily lead to context misalignment. The use
of adaptive warping [1–3] or multiple motion fields strat-
egy [3, 7] may alleviate this problem.

RS frame 1 JAMNet (Ours) Ground-truth

Figure S2. Failure cases in challenging narrow image regions.
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RS image GS image Ours AdaRSC

DeepUnrollNet JCD SUNet

Figure S3. More real-world RSC results on the BS-RSC dataset [3]. Existing RSC methods either fail to remove the RS effect or
introduce other undesirable artifacts (e.g., blurring, ghosting, unsmoothing, missing details, local errors, etc.). In contrast, thanks to the
coarse-to-fine joint appearance and motion learning, our method achieves higher-quality results. Best viewed on screen.
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Figure S4. More real-world RSC results on the BS-RSC dataset [3]. Existing RSC methods either fail to remove the RS effect or
introduce other undesirable artifacts (e.g., blurring, ghosting, unsmoothing, missing details, local errors, etc.). In contrast, thanks to the
coarse-to-fine joint appearance and motion learning, our method achieves higher-quality results. Best viewed on screen.
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Forward motion field: Backward motion field:

Backward warped GS:

First RS: Second RS: Forward motion field: Backward motion field:

Ground-truthFinal synthesized GS:Forward warped GS: Backward warped GS:

Figure S5. Visual results of the intermediate process of our method. Due to the occlusion between the RS and GS images (cf . blue
circles), both forward and backward warped GS images suffer from local detail loss, as shown by the red circles. Fortunately, our method
can aggregate these contextual information in an adaptive manner to synthesize a final high-fidelity GS image. Furthermore, our method
can recover a plausible bilateral undistortion field with significant scanline-dependent properties (e.g., the upper and lower regions of U1

g→1

exhibit different pixel displacement directions).
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Figure S6. Visualization of ablation results. Here, TMEM indicates the transformer-based motion embedding module, and DA denotes
the proposed data augmentation strategy. See Table 3 in the main text for the corresponding quantitative results. Overall, our full model
recovers the most visually appealing GS images with fewer local artifacts and sharper edges, such as pant legs and human faces.
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