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8. Supplementary Material
The source code of GaitBase is avaliable at https:

//github.com/ShiqiYu/OpenGait. In this section,
we first explore the effectiveness of several usual spatial
data augmentation operations. Then, we conduct compre-
hensive experiments to analyze the effect of random train-
ing input length. Lastly, we talk about some future works
that are worth further exploration.

8.1. Effect of Spatial Data Augmentation
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Figure 6. The visualization of source image with different spa-
tial data augmentation operations. In Rotation, the twist angle is
randomly sampled from [−10◦,+10◦]. In Perspective Transfor-
mation, the source axes are randomly skewed within 10 pixels to
produce the transform axes of perspective. In Affine Transforma-
tion, we perform Rotation on source images and then shear them
with their level ranging on [−5 × 10−3, 5 × 10−3]. In Random
Erasing, we use the original hyper-parameters [49] for image clas-
sification. For each input sequence, the probability of performing
spatial augmentation operations is set to 0.5.

As shown in Fig. 6, we perform various spatial augmen-

*Corresponding Author

Table 9. Ablation study for spatial data augmentation with the
fixed length training input. Rank-1 accuracies (%) are reported on
CASIA-B* and Gait3D, HF for Horizontal Flip, R for Rotation,
PT for Perspective Transformation, AT for Affine Transformation,
and RE for Random Erasing. The bracket indicates that the per-
formance outperforms the GaitBase without data augmentation.

Group Data Augmentation CASIA-B* Gait3DHF R PT AT RE
- 86.8 54.7

(a) ✓ 86.5 (59.5)
(b) ✓ (87.4) (60.5)
(c) ✓ 86.6 (58.9)
(d) ✓ 79.0 (55.8)
(e) ✓ (87.8) 54.1
(f) ✓ ✓ 88.7 -
(g) ✓ ✓ ✓ - (62.4)

tation techniques to enlarge the data space and avoid over-
fitting of the model. We conduct an ablation study on two
commonly used indoor and outdoor datasets, i.e., CASIA-
B*1 and Gait3D, to evaluate the efficacy of these approaches
experimentally. The results are shown in Table 9.

Horizontal Flip can largely simulate a mirror transfor-
mation of the filming viewpoint. In (a), we observe that
although it fails to improve the performance of CASIA-B*,
it significantly improves accuracy on Gait3D. This can be
explained by the fact that CASIA-B* is recorded in a lab-
oratory environment using an all-sided camera array, while
Gait3D is captured in real-world conditions with compara-
tively fewer viewpoint changes per subject.

From the experiment (b) in Table 9, Rotation technique
slightly benefits both CASIA-B* and Gait3D.

Perspective Transformation aims to simulate the effects

1The conclusions obtained from the experiments on CASIA-B and
CASIA-B* are consistent. Here we only present the results on CASIA-
B* for brevity.
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Figure 7. The effect of random training input length. 20-40 and
10-50 represent that the input lengths are uniformly distributed
over 20 to 40 and 10 to 50.

of different camera heights. As shown in (c), our experi-
ments indicate that this technique only has a significant im-
pact on Gait3D dataset. The cause should be that there are
no camera height changes in CASIA-B*, whereas there are
such changes in Gait3D.

From the experiment (d) in Table 9, it appears that
Affine Transformation is not able to effectively simulate the
noisy factors present in both indoor CASIA-B* and outdoor
Gait3D datasets, thereby failing to bring any performance
gain on these datasets.

The main goal of Random Erasing [49] is to simulate the
occlusion conditions and avoid the over-fitting problem in
the spatial dimension. From (e), we note that the erasing
operation is challenging to simulate the practical occlusion
cases and thus makes almost no difference on Gait3D.

Building upon the above experimental results, we apply
the Rotation and Random Erasing for the indoor datasets
such as CASIA-B*, CASIA-B and OU-MVLP. On the other
hand, for outdoor datasets like Gait3D and GREW, we em-
ploy the combination of Horizontal Flip, Rotation, and Per-
spective Transformation as the augmentation strategy. As
evident from (f) and (g), it can be observed that the data aug-
mentation approach brings accuracy improvements of 1.9%
and 7.7% on CASIA-B* and Gait3D, respectively.

Based on the above analysis, we again expose the siz-
able gap between the experimental and practical gait data.
Therefore, we propose that the research community should
focus more attention on outdoor gait datasets for better prac-
ticality.

8.2. Effect of Random Training Input Length

In this subsection, we investigate the effect of random
training input length on the final recognition performance.

As shown in Fig. 7, we observe that the fixed length in-
put works relatively optimal for the indoor dataset such as
CASIA-B, CASIA-B* and OU-MVLP. On the other hand,
the use of random length input yields superior performance
for outdoor datasets, such as GREW and Gait3D. Theoreti-
cally, similar to the popular Dropout [45] technique, the us-
age of random sequence length can maintain consistency in
features, regardless of the input length, thus easing the over-
fitting problem in the temporal dimension. In laboratory-
acquired datasets, frame dropping and walking speed fluc-
tuations are minimal, thereby resulting in a uniform number
of frames in the gait cycle. As a result, the random train-
ing input length has little impact on indoor datasets such
as CASIA-B, CASIA-B*, and OU-MVLP, which may be
attributed to this consistent nature.

8.3. Future Work and Discussion

This paper presents a comprehensive benchmark study
towards gait recognition applications, which includes a flex-
ible codebase, a series of experimental reviews, and a robust
baseline. In addition, here we highlight some subsequent
works that are worth further exploration.
Gait Verification Task. The evaluation protocols of exist-
ing gait datasets mostly focus on identification (retrieval)
tasks, resulting in gait verification scenarios being ignored
in most cases. Typically, there are two categories of meth-
ods for performing verification processes: training a bi-
nary classifier [47, 48] or inferring a conclusive distance
threshold to determine whether the two subjects come from
the same identity. However, since clothing and viewpoint
changes may dramatically impact gait appearance, reducing
the intra-class distance is always a challenging issue for gait
recognition. This poses a huge obstacle for gait verification
applications. We encourage the research community to de-
vote more attention to this complex topic, as it is widely
needed for practical usage.
Stronger Baseline Model. Although the proposed base-
line model, GaitBase, has achieved state-of-the-art perfor-
mance on the largest outdoor gait dataset, GREW [50],
with a rank-1 accuracy of 60.1%, there is still a signifi-
cant gap in achieving an accurate enough gait recognition
for real-world applications. Additionally, there has been a
modeling shift from CNNs to Transformers [43, 44, 46] in
many visual tasks. With its outstanding modeling capabili-
ties, transformer-based gait recognition offers a fascinating
solution to the challenges posed by outdoor environments,
yet it has not received the attention it deserves. Therefore,
the development of a stronger baseline model, such as a
transformer-based model, remains a pressing issue for prac-
tical gait recognition.
Unsupervised Gait Recognition. The large-scale collec-
tion of annotated gait data in the wild is economically ex-
pensive and usually limited in the trade-off between the



diversity and scale. For example, the largest outdoor gait
dataset, GREW [50], covers over 20,000 subjects, but each
subject, on average, only has about 4.5 walking sequences
mostly captured from nearly front and back viewpoints. Ad-
ditionally, it is challenging for outdoor gait datasets like
GREW to include the long-term changes in clothing, age,
hair, and body sizes for each subject as their collection pro-
cess typically finishes in several months. Therefore, we
consider learning the general gait representation, i.e., prior
identity knowledge, from unlabelled walking videos to be a
challenging yet highly appealing task for further study.

Ethical Statements.
We are highly concerned about personal information se-

curity and argue that the improper use or abuse of gait
recognition will threaten personal privacy. We believe that
the development of vision techniques should only devote to
the cause of human happiness.
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