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config value
peak learning rate 1e-4
optimizer AdamW [13, 15]
optimizer hyper-parameters β1, β2, ϵ = 0.9, 0.98, 1e-6
layer-wise lr decay [1, 6] 0.85
learning rate schedule cosine decay
weight decay 0.05
input resolution 2242

batch size 4096
warmup epochs 15
training epochs 60
drop path [11] 0.4
augmentation RandAug (9, 0.5) [7]
label smoothing [17] 0.1
cutmix [21] 1.0
mixup [22] ✗

random erasing [23] ✗

random resized crop (0.5, 1)
ema ✗

Table 1. Intermediate fine-tuning setting for ImageNet-21K.

A. Appendix
The MIM pre-training and contrastive language-image

pre-training settings are already available in our main sub-
mission. Here we summarize the detailed configurations
for image classification (§A.1), video action classification
(§A.2), object detection & instance segmentation (§A.3), and
semantic segmentation (§A.4).

A.1. Image Classification

The fine-tuning hyper-parameters for ImageNet-21K and
ImageNet-1K are shown in Table 1 and Table 2, respectively.

A.2. Video Action Classification

For video action classification tasks, a two-stage fine-
tuning process is adopted. The statistics of video datasets
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config value
peak learning rate 3e-5
optimizer AdamW
optimizer hyper-parameters β1, β2, ϵ = 0.9, 0.999, 1e-8
layer-wise lr decay 0.95
learning rate schedule cosine decay
weight decay 0.05
input resolution 3362 / 5602

batch size 512
warmup epochs 2
training epochs 10 / 15
drop path 0.4
augmentation RandAug (9, 0.5)
label smoothing 0.3
cutmix ✗

mixup ✗

random erasing ✗

random resized crop (0.08, 1)
ema 0.9999
test crop ratio 1.0

Table 2. Fine-tuning setting for ImageNet-1K.

dataset & split #clips avg. length #classes

Kinetics-400 train [12] 234,584 10s 400
Kinetics-400 val [12] 19,760 10s 400
Kinetics-600 train [2] 412,688 10s 600
Kinetics-600 val [2] 29,779 10s 600
Kinetics-700 train [3] 534,063 10s 700
Kinetics-700 val [3] 33,914 10s 700
Kinetics-722 (ours) 629,395 10s 722

Table 3. Video dataset statistics.

we used are available in Table 3.
In the first stage, we conduct intermediate fine-tuning on

a merged dataset coined Kinetics-722 (K-722) that integrates
all valid training samples from Kinetics-400 (K-400) [12],
Kinetics-600 (K-600) [2] and Kinetics-700 (K-700) [3]. The
input video resolution is 2242 with 8 frames. Notably, for
a fair and legal comparison, we removed leaked videos in
all validation sets and duplicated videos in all training sets
based on the videos’ “youtube id”. Accordingly, the cleaned
K-722 contains 0.63M training videos, covering 722 human
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config value
optimizer AdamW
optimizer hyper-parameters β1, β2, ϵ = 0.9, 0.98, 1e-6
weight decay 0.05
peak learning rate 8e-6
learning rate schedule cosine decay
warmup epochs 5
epochs 40
batch size 256
input resolution 2242

random flip 0.5
multiscale crop (1, 0.875, 0.75, 0.66)
color jitter 0.8
grayscale 0.2
cutmix 1.0
mixup 0.8
label smoothing 0.1
drop path 0.3
layer-wise lr decay ✗

Table 4. Kinetics-722 intermediate fine-tuning settings.

config K-400 [12] K-600 [2] K-700 [3]
optimizer AdamW
optimizer hyper-parameters β1, β2, ϵ = 0.9, 0.98, 1e-6
weight decay 0.05
peak learning rate 1e-6
minimal learning rate 1e-6
warmup epochs 0
epochs 1 2 2
batch size 256
input resolution 2242

random flip 0.5
multiscale crop (1, 0.875, 0.75, 0.66)
color jitter 0.8
grayscale 0.2
mixup ✗

cutmix ✗

label smoothing 0.1
drop path 0.2
layer-wise lr decay 0.95
multi-view inference 4 clips, 3 crops

Table 5. Hyper-parameters used in the video action recognition.

action classes. Table 4 lists the detailed settings & hyper-
parameters for fine-tuning on this dataset.

In the second stage, we further fine-tune on each dataset
using more input video frames of 16 with a resolution of
2242. For the frame sampling, we adopt the sparse sampling
strategy [19]. During testing, we follow the common practice
of multi-view inference [8, 14, 18, 20] with 4 temporal clips
and 3 spatial crops. The final prediction is the ensemble
of all trials. Table 5 lists the detailed hyper-parameters for
fine-tuning on K-400, K-600 and K-700.

A.3. Object Detection & Instance Segmentation

The detailed hyper-parameters are shown in Table 6 and
Table 7. For intermediate fine-tuning on Objects365 [16], the
model is trained with a batch size of 128 for 380k iterations.
To accelerate the training process, we use a smaller input
resolution of 10242 for the first 320k iteration. Afterward,
the input resolution is lifted to 12802 for a better adaptation

config value
optimizer AdamW
optimizer hyper-parameters β1, β2, ϵ = 0.9, 0.999, 1e-8
learning rate 1e-4
layer-wise lr decay 0.9
training steps 380k
training input resolution 10242 → 12802

batch size 128
weight decay 0.1
drop path 0.6

Table 6. Objects365 object detection intermediate fine-tuning set-
tings.

config COCO LVIS
optimizer AdamW
optimizer hyper-parameters β1, β2, ϵ = 0.9, 0.999, 1e-8
learning rate 2.5e-5
learning rate schedule step decay
training steps 45k 75k
learning decay step 40k 70k
batch size 64
training input resolution 12802

weight decay 0.1
layer-wise lr decay 0.9
drop path 0.6
repeat threshold - 0.001
frequency weight power - 0.5
max numbers of detection 100 1000

Table 7. COCO and LVIS object detection & instance segmentation
fine-tuning settings.

config COCO-Stuff ADE20K
optimizer AdamW
optimizer hyper-parameters β1, β2, ϵ = 0.9, 0.999, 1e-8
peak learning rate 1.5e-5 2.5e-5
batch size 32 64
fine-tuning steps 60000 20000
layer-wise lr decay 0.95
weight decay 0.5
drop path 0.5
input resolution 8962

seg head #enc. & #dec. 6 & 8
seg head dim 1024
relative position bias ✗

Table 8. COCO-Stuff-164K and ADE20K semantic segmentation
fine-tuning settings.

to the fine-tuning of COCO and LVIS.

For fine-tuning COCO and LVIS, the learning rate is
initialized as 2.5e-5 and step by a factor of 10 for the last
5k iterations. As shown in Table 7, we use almost identical
hyper-parameters for training COCO and LVIS. Except for
the commonly used repeat factor sampling [10] and federated
loss [24] that are specialized for long-tailed recognition, the
only difference in training is that we train the model for 45k
steps on COCO, while a longer 75k step on LVIS, since the
tail classes generally take a longer schedule to converge [9].



A.4. Semantic Segmentation

Detailed configurations about semantic segmentation are
available in Table 8. Our settings basically follow ViT-
Adapter [4] with Mask2Former [5] as the segmentation head.
For ADE20K, we use COCO-Stuff pre-trained weights as
initialization.
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