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In this supplementary material, we provide more details
of the DCNN in kernel estimation network, the architecture
of normalizing flow model, the architecture of the block
in the proposed UFPNet, the learned attention features in
KAM and more visual comparison results on test images.

1. The DCNN in Kernel Estimation Network

In the proposed flow-based uncertain kernel estima-
tion network, we use deep convolutional neural networks
(DCNN) to estimate the latent code of the underlying blur
kernel, the architecture of the DCNN is shown in Fig. 1.
We use an encoder-decoder structure like [4, 5], two encod-
ing and decoding blocks are used to reduce and increase
the size of feature maps, respectively. The downsampling
layer in encoding block is a 3 × 3 convolution layer with
stride of 2, and the upsampling layer in decoding block is a
deconvolution layer. The feature maps of encoding blocks
are concatenated with the features in decoding blocks us-
ing long connections. There are 5 Conv layers with ReLU
activation function in the middle convolution module.

2. The Architecture of the Normalizing Flow
Model

In section 3.1 of the paper, we propose to establish a bi-
jective mapping between the the complex motion blur ker-
nel and the simple Gaussian distribution by a normalizing
flow model. As shown in Fig. 2, the normalizing flow
model [7] is built by stacking several invertible flow blocks,
which consist of a batch normalization layer, a permutation
layer and a affine transformation layer [3]. In affine trans-
formation layer, fully connected neural networks (FCN) are
used for scaling and shifting, each FCN stacks fully con-
nected layers and tanh activation layers alternately.
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(c) The architecture of  Middle Conv.
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(a) The architecture of DCNN in uncertain kernel estimation network.

(b) The architecture of Resmodule.
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Figure 1. The architecture of (a) the DCNN in the proposed kernel
estimation network. (b) the Resmodule. (c) the Middle Conv.

3. The Architecture of the Block in UFPNet
In the proposed UFPNet, we adopt the block proposed by

NAFNet [1], which is a simple and effective basic block for
image restoration. As illustrated in Fig. 3, the basic block
includes layernorm layer, 1 × 1 convolution layer, 3 × 3
deconvolution layer, SimpleGate layer and simplified chan-
nel attention layer (SCA). The SimpleGate layer divides the
input feature maps into two parts in the channel dimension
and element-wise multiply them, therefore the output fea-
ture maps have only half of the channels of the input feature
maps. The simplified channel attention layer consists of a
global average pooling layer and a 1× 1 convolution layer.

4. The Learned Attention Features in KAM
We propose a novel kernel attention module (KAM) for

the deblurring network to utilize the information from the
estimated blur kernel sufficiently. Some learned attention
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Figure 2. The illustration of the normalizing flow model, each flow block which consists of a batch normalization layer, a permutation
layer and a affine transformation layer.
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(c) The architecture of Simplified Channel Attention (SCA).
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(b) The architecture of SimpleGate layer

(c) The architecture of the block in the proposed UFPNet

Figure 3. The illustration of the block in the proposed UFPNet, and the architecture of SimpleGate layer and simplified channel attention
(SCA) layer are illustrated in (b) and (c).

features of Eq. (7) in the paper are visualized in Fig. 4, With
the help of the learned attention, image features will pay dif-
ferent attention to areas with different degrees of blurring,
achieving better results on non-uniform deblurring.

5. More Visual Comparison Results

We provide more visual comparisons on benchmark test
datasets in Fig. 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14. We have
compared our UFPNet method with several recent state-
of-the-art blind deblurring methods, including HINet [2],
DeepRFT [8], Stripformer [9], MSDI-Net [6] and NAFNet
[1]. From Fig. 11 and Fig. 12, we can see that our method is
effective for removing blur caused by motion trajectory. We
also show the visualization results on the RWBI dataset [10]
in Fig. 13 and 14, which only contains real-world blurry
images without ground truth. It can be observed that the

(a)

(b)

Figure 4. The visualization of the learned attention features in
KAM. (a) The blurry image. (b) The learned attention features.

proposed method can achieve higher reconstruction quality
and recover more details of the textures and edges than other
methods.
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Figure 5. Visual comparisons on the GoPro dataset. From left to right: blurry image, ground-truth, results by HINet [2], DeepRFT [8],
Stripformer [9], MSDI-Net [6], NAFNet [1] and UFPNet (ours).
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Figure 6. Visual comparisons on the GoPro dataset. From left to right: blurry image, ground-truth, results by HINet [2], DeepRFT [8],
Stripformer [9], MSDI-Net [6], NAFNet [1] and UFPNet (ours).
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Figure 7. Visual comparisons on the HIDE dataset. From left to right: blurry image, ground-truth, results by HINet [2], DeepRFT [8],
Stripformer [9], MSDI-Net [6], NAFNet [1] and UFPNet (ours).
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Figure 8. Visual comparisons on the HIDE dataset. From left to right: blurry image, ground-truth, results by HINet [2], DeepRFT [8],
Stripformer [9], MSDI-Net [6], NAFNet [1] and UFPNet (ours).
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Blurry image from RealBlur-J testset

Figure 9. Visual comparisons on the RealBlur-J dataset. From left to right: blurry image, ground-truth, results by HINet [2], DeepRFT [8],
Stripformer [9], MSDI-Net [6], NAFNet [1] and UFPNet (ours).
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Figure 10. Visual comparisons on the RealBlur-J dataset. From left to right: blurry image, ground-truth, results by HINet [2], DeepRFT [8],
Stripformer [9], MSDI-Net [6], NAFNet [1] and UFPNet (ours).
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Figure 11. Visual comparisons on the RealBlur-J dataset. From left to right: blurry image, ground-truth, results by HINet [2], DeepRFT [8],
Stripformer [9], MSDI-Net [6], NAFNet [1] and UFPNet (ours).
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Figure 12. Visual comparisons on the RealBlur-J dataset. From left to right: blurry image, ground-truth, results by HINet [2], DeepRFT [8],
Stripformer [9], MSDI-Net [6], NAFNet [1] and UFPNet (ours).
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Figure 13. Visual comparisons on the RWBI dataset. From left to right: blurry image, results by HINet [2], DeepRFT [8], Stripformer [9],
MSDI-Net [6], NAFNet [1] and UFPNet (ours).
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Figure 14. Visual comparisons on the RWBI dataset. From left to right: blurry image, results by HINet [2], DeepRFT [8], Stripformer [9],
MSDI-Net [6], NAFNet [1] and UFPNet (ours).
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