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(a) DEQUMEF outcome, misclassification error = 1.7%.
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(b) DEQUMF (SA) outcome, misclassification error = 0%.

(c) Ground-truth segmentation.

Figure 7. A sample of the best case for our approach on the bread-
cube sequence of the AdelaideRMF dataset [7]. Point membership
is color-coded and ground-truth segmentation is also reported.

This supplementary document provides the reader with
further details on our experiments.

A. Parameters and Implementation Details

This section highlights the parameter settings of the ex-
periments presented in Sec. 5 of the main paper.

(c) Ground-truth segmentation.

Figure 8. A sample of the worst case for our approach on the
gamebiscuit sequence of the AdelaideRMF dataset [7]. Point
membership is color-coded and ground-truth segmentation is also
reported.

The chain strength parameter. Following previous work
(e.g., [1]), we employ the maximum chain length criterion
for all our experiments: given a logical graph (i.e., a QUBO
problem to be solved), we first minor-embed it to the phys-
ical one. Once the final embedding is found, the length /
of the longest qubit chain is computed. The chain strength
parameter is then set to [ plus a small offset, i.e., 0.5 in our
experiments.



(c) Ground-truth segmentation.

Figure 9. A sample case for our approach on the cars2B sequence
of the Hopkins benchmark [6]. Point membership is colour-coded
and ground-truth segmentation is also reported.

Number of anneals. We set the number of anneals as fol-
lows: algorithms solving QUBOs built with the entire pref-
erence matrix (“one-sweep” methods QUMF and QUMF
(SA)) are executed with 5000 and 100 anneals, respectively.
Algorithms employing our iterative decomposition princi-
ple are configured differently:

1. DEQUMF executes 2500 anneals for each subprob-
lem, with subproblems containing 20 models each;

2. DEQUMF (SA) runs with 100 anneals for each sub-
problem, with subproblems having 40 models.

In Sec. 5.3, when evaluating DEQUMF and HQC-RF [3],
to provide a fair comparison we fix the amount of available
resources per-routine. In this setup, we configured all the
optimization routines (SAs/QAs) with 100 anneals, regard-
less of the algorithm.

Synthetic experiments. To collect statistics, we execute
each CPU-based algorithm ten times and report average re-
sults. Due to limited QPU availability in our subscription,
DEQUMF is run 5 times. In Figs. 3-5 (main paper), the
95% confidence intervals are displayed around data points.

AdelaideRMF [7]  Traffic2 [6] Traffic3 [6] York [2]

mean 160 241 332 119
n min 105 41 123 25
max 239 511 548 627
mean 960 1446 1994 1188
m min 630 246 738 250
max 1434 3066 3288 6270
& min 2 2 3 2
max 4 2 3 3
o const 6 6 6 10

Table 4. Details of each real dataset used in the experiments of
Sec. 5 in the main paper: n refers to the number of points, &k to
the number of ground-truth structures, m is the number of models
computed as m = on.

To provide a comparison on an equal basis, all the methods
have been tested on the same preference matrices. In addi-
tion, for this test we used a modified version of RANSACOV
[4], which enforces disjointedness among the sets of the re-
trieved solution, as done in the (soft) constraint of QUMF.

Real experiments. In the context of multi-model exper-
iments of Sec. 5 of the main paper (Tables 1-2), for a fair
comparison, the inlier threshold e has been tuned per se-
quence as in [4]. Preference matrices are instantiated with
a fixed points-to-models ratio, i.e., the number of models m
is always m = on. In our experiments, we select o = 6 for
AdelaideRMF [7] and the Hopkins [6] benchmarks, o = 10
for the York dataset [2]. Recall that the number of models
is equal to the number of logical qubits, which essentially
determines the problem complexity. Additional insights on
the characteristics of the involved datasets are provided in
Tab. 4. Following synthetic experiments, CPU-based algo-
rithms are run ten times and averaged results are reported;
DEQUMF, when available, is executed once.

Runtimes for real experiments. Runtimes of the experi-
ments executed on real world datasets are reported in Tab. 5
to provide completeness to our experimental evaluation.
However, these numbers may report a distorted comparison
because of:

1. implementation differences, as RANSACOV [4] is
MATLAB-based, whilst HQC-RF [3] and all of our
methods are Python-based;

2. hardware differences, highlighted in the caption of
Tab. 5;

3. overheads related to AQC:s; specifically, we are includ-
ing network communication times since we must ac-
cess a shared AQC we don’t have in loco, and resource
allocation times due to other users that would not be
present with an in-house machine.



AdelaideRMF-S ~ AdelaideRMF-M  Traffic2  Traffic3 York

TRANSACOV [4] - 0.48 1.46 2.14 0.24
fDEQUMEF (SA) (ours) 0.99 0.77 254 3.65 1.93
fQUMF (SA) (ours) 23.92 10.72 5305 7646 10238
fDEQUMF (ours) 89.62 116.71 - 376.09
#HQC-RF [3] 2349.27 - . _

Table 5. Mean runtimes [s]. AdelaideRMF-S is single-model, with
M is multi-model. T run on an Intel-i7-8575U; * on an Intel-i9-
7900X. Please zoom in.

These technicalities currently make the comparison unfair.
Additionally, we point out that the annealing time (20s) is
independent on the problem size. Hence, in anticipation of
stable AQCs, we believe our quantum approach is a promi-
nent research direction in terms of runtime, too.

Comparison with quantum state of the art. Concerning
Tab. 3 of the main paper, we fix the inlier threshold as € =
0.045 for all the sequences for both our method and HQC-
RF [3]. Apart from e (that essentially defines a bound on the
distance of inlier points to models), when evaluating HQC-
RF, we use the source code provided by the authors and the
default parameter settings therein.

Additional insights on QUMF. Recall that the quadratic
term in our QUBO formulation is determined by the product
PT P, with P being the preference matrix. Hence, from an
interpretative perspective, the quadratic term between mod-
els 7 and j (which we denote by ¢;; from now on) is equal
to the number of points the two have in common. By lever-
aging this interpretation, a useful observation can be made
for a very peculiar situation, namely the case where, for a
fixed ¢, we have ¢;; = 0 Vj # ¢. This means that model ¢
does not share any point with the remaining models in P:
In such a situation, we can conclude that model ¢ is an es-
sential component of the final solution z, as it covers at least
one point that is not explained by any other model. In other
terms, z; = 1 must be true at the global optimum. This sim-
ple observation thus allows to prune the search space and
proceed with embedding a reduced (i.e., smaller) QUBO.
On the contrary, if the full logical graph was considered,
then the minor embedding procedure would avoid mapping
model 7 to the QPU; this would result in unmapped logical
qubits, which is undesirable in practice.

B. Qualitative Results

In this section, we provide qualitative results to visually
interpret the behaviour of the proposed approaches. Results
are given in Figs. 7, 8 and 9. In particular, a failure case
is reported in Fig. 8a where DEQUMF exhibits pseudo-
random behaviour. Apart from that, in general, both vari-
ants of our approach—DEQUMF and DEQUMF (SA)—

(a) Visualization of a full QUBO from Star5 [5]. The 100 nodes composing
the logical graph (left) are mapped to 869 physical qubits (right).

(b) Visualization of a subproblem extracted from Star5 [5]. The 20 nodes
composing the logical graph (left) are mapped to 32 physical qubits (right).

Figure 10. Visual representation of logical and physical graphs
when working with the Star5 dataset [5]. Sub-figure (a) refers to
a preference matrix with n = 250 points and m = 100 models
while sub-figure (b) considers a small portion of such preference
matrix, corresponding to a sub-problem with m = 20 models (as
tackled by our decomposed approach).

return accurate results, confirming the outcome of the quan-
titative analysis reported in the main paper.

C. Minor Embeddings

Finally, we visually analyze the concepts of logical and
physical graphs. Specifically, Fig. 10 reports both the logi-
cal graph and its mapping to the QPU (obtained as a result
of a minor embedding procedure) on exemplary problems
with 20 and 100 logical qubits, respectively. Fig. 10 clearly
shows that the problem with 100 logical qubits requires a
significantly larger amount of physical qubits, as already
observed in the main paper.
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