A. Experimental Details

We follow the implementation details of the official MAE [28] for all pre-training and fine-tuning. Meantime, we follow the implementation of bootMAE [20] for settings of segmentation tasks. While MAE uses only ViT-B and ViT-L, we also use ViT-S [60].

For pre-training, we use the same effective batch size of 4096 as MAE with accum_iter, *e.g.*, 256 (batch_size_per_gpu) \times 8 (GPUS) \times 2 (accum_iter). The detail configurations is listed in Table 9. For end-to-end fine-tuning, we provide the configures in Table 10 for different backbones.

m 1 1	0	D		•
Table	0	Dro	training	cottinge
Table	7.	L 1C-	uannng	SELUII25.

Config	Value
optimizer	AdamW
optimizer momentum	0.9, 0.95
weight decay	0.05
base learning rate	1.4e-4
learning rate schedule	cosine
warmup epochs	40
augumentation	RandomResizeCrop

T 1 1 1		• .	•	
Inhia I	IN 6	1na tiii	11110	cottingc
	IV. I.	1116-1111	IIII 2	SCHIII9S
incre i				Sectings

Config	Value
optimizer	AdamW
optimizer momentum	0.9, 0.999
weight decay	0.05
layer-wise lr decay	0.75 (S), 0.65 (B, L)
base learning rate	5e-4
drop path	0.1 (S,B), 0.2(L)
batch size	1024
learning rate schedule	cosine
warmup epochs	5
training epochs	300(S), 100 (B,L)
label smoothing	0.1

B. Pytorch Code for Adversarial Training

We also provide the simplified pytorch implementation for adversarial training in GAN-MAE model, to illustrate the optimization process more expressly.

Figure 4. **Performance comparison given the same compute budget with ViT-B structure**. With the advancing of discriminator capacity, the performance gains consistently increase.

Lis	Listing 1: Example Pytorch Code				
1	mode	el = mae_gan_vit_base_patch16()			
2					
3	opti	<pre>imizer_gen = AdamW(generator_module.</pre>			
		parameters(), lr=lr)			
4	opti	imizer_disc = AdamW(discriminator_module.			
		parameters(), lr=lr)			
5					
6	for	raw_img in dataloader_pretrain:			
7		# generator training			
8		optimizer_gen.zero_grad()			
9		<pre>gen_loss, corrupt_img, mask = model.</pre>			
		forward_with_generator(raw_img)			
10		gen_loss.backward()			
11		optimizer_gen.step()			
12					
13		<pre># discriminator training</pre>			
14		<pre>corrupt_img, mask = corrupt_img.detach(),</pre>			
		<pre>mask.detach()</pre>			
15		<pre>optimizer_disc.zero_grad()</pre>			
16		disc_loss = model.			
		forward_with_discriminator(
		corrupt_img, mask)			
17		disc_loss.backward()			
18		optimizer_disc.step()			

C. Extra Experimental Results

Compute-matched Comparison. We also chose to measure compute usage in terms of floating point operations (FLOPs) because it is a measure agnostic to the particular hardware, low-level optimizations, etc. We plot the computation-performance curve in Figure 4, and we can observe that GAN-MAE outperforms the MAE persistently under the same computation budget in the downstream classification task.

Linear Probing Evaluation. We conduct the linear probing experiment to evaluate the semantic level of a representation, and the results are listed in Table 11. As can be seen, our method pre-trained on 800 epochs achieves a considerable gain (+4.0%) compared with MAE baselines, even on 1600 epochs.

Table 11. Linear probing evaluation on ImageNet-1K. We report the top-1 accuracy for classification with different ViT structures.

Method	Pre-train epochs	ViT-B	ViT-L
MAE	800	64.4	73.5
MAE	1600	67.8	75.1
GAN-MAE	800	69.3	77.5