
A. Experimental Details

We follow the implementation details of the official
MAE [28] for all pre-training and fine-tuning. Meantime,
we follow the implementation of bootMAE [20] for settings
of segmentation tasks. While MAE uses only ViT-B and
ViT-L, we also use ViT-S [60].

For pre-training, we use the same effective batch
size of 4096 as MAE with accum iter, e.g., 256
(batch size per gpu) × 8 (GPUS) × 2 (accum iter). The
detail configurations is listed in Table 9. For end-to-end
fine-tuning, we provide the configures in Table 10 for dif-
ferent backbones.

Table 9. Pre-training settings.

Config Value
optimizer AdamW
optimizer momentum 0.9, 0.95
weight decay 0.05
base learning rate 1.4e-4
learning rate schedule cosine
warmup epochs 40
augumentation RandomResizeCrop

Table 10. Fine-tuning settings.

Config Value
optimizer AdamW
optimizer momentum 0.9, 0.999
weight decay 0.05
layer-wise lr decay 0.75 (S), 0.65 (B, L)
base learning rate 5e-4
drop path 0.1 (S,B), 0.2(L)
batch size 1024
learning rate schedule cosine
warmup epochs 5
training epochs 300(S), 100 (B,L)
label smoothing 0.1

B. Pytorch Code for Adversarial Training

We also provide the simplified pytorch implementation
for adversarial training in GAN-MAE model, to illustrate
the optimization process more expressly.

0 1 2 3 4 5 6
Pre-train FLOPs 1e20

82.5

83.0

83.5

84.0

84.5

85.0

To
p-

1 
Ac

c.

MAE
GAN-MAE

Figure 4. Performance comparison given the same compute
budget with ViT-B structure. With the advancing of discrimina-
tor capacity, the performance gains consistently increase.

Listing 1: Example Pytorch Code
1 model = mae_gan_vit_base_patch16()
2
3 optimizer_gen = AdamW(generator_module.

parameters(), lr=lr)
4 optimizer_disc = AdamW(discriminator_module.

parameters(), lr=lr)
5
6 for raw_img in dataloader_pretrain:
7 # generator training
8 optimizer_gen.zero_grad()
9 gen_loss, corrupt_img, mask = model.

forward_with_generator(raw_img)
10 gen_loss.backward()
11 optimizer_gen.step()
12
13 # discriminator training
14 corrupt_img, mask = corrupt_img.detach(),

mask.detach()
15 optimizer_disc.zero_grad()
16 disc_loss = model.

forward_with_discriminator(
corrupt_img, mask)

17 disc_loss.backward()
18 optimizer_disc.step()

C. Extra Experimental Results
Compute-matched Comparison. We also chose to mea-
sure compute usage in terms of floating point operations
(FLOPs) because it is a measure agnostic to the partic-
ular hardware, low-level optimizations, etc. We plot the
computation-performance curve in Figure 4, and we can
observe that GAN-MAE outperforms the MAE persistently
under the same computation budget in the downstream clas-
sification task.

Linear Probing Evaluation. We conduct the linear prob-
ing experiment to evaluate the semantic level of a represen-



tation, and the results are listed in Table 11. As can be seen,
our method pre-trained on 800 epochs achieves a consider-
able gain (+4.0%) compared with MAE baselines, even on
1600 epochs.

Table 11. Linear probing evaluation on ImageNet-1K. We re-
port the top-1 accuracy for classification with different ViT struc-
tures.

Method Pre-train epochs ViT-B ViT-L

MAE 800 64.4 73.5
MAE 1600 67.8 75.1
GAN-MAE 800 69.3 77.5


	. Experimental Details
	. Pytorch Code for Adversarial Training
	. Extra Experimental Results

