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A. Limitations and broader impact
A.1. Limitations

Although we believe concept-based XAI to be a promis-
ing research direction, it isn’t without pitfalls. It is capa-
ble of producing explanations that are ideally easy to un-
derstand by humans, but to what extent is a question that
remains unanswered. The fact that there is no way to math-
ematically measure this prevents researchers from easily
comparing the different techniques in the literature other
than through time consuming and expensive experiments
with human subjects. We think that developing a metric
should be one of the field’s priorities.

With CRAFT, we address the question of what by show-
ing a cluster of the images that better represent each concept.
However, we recognize that it’s not perfect: in some cases,
concepts are difficult to clearly define – put a label on what
it represents –, and might induce some confirmation and se-
lection bias. Feature visualization [51] might help in better
illustrating the specific concept (as done in appendix B.3),
but we believe there’s still space for improvement. For in-
stance, an interesting idea could be to leverage image cap-
tioning methods to describe the clusters of image crops, as
textual information could help humans in better understand-
ing clusters.

Although we believe CRAFT to be a considerable step
in the good direction for the field of concept-based XAI, it
also have some pitfalls. Namely, we chose the NMF as the
activation factorization, which, while drastically improving
the quality of extracted concepts, also comes with it’s own
caveats. For instance, it is known to be NP-hard to compute
exactly, and in order to make it scalable, we had to use a
tractable approximation by alternating the optimization of
U and W through ADMM [5]. This approach might in-
deed yield non-unique solutions. Our experiments (section
4.3), have shown a low variance on between the runs, which
comforts us about the stability of our results.However the
absence of formal guarantee for uniqueness must be kept
in mind: this subject is still an active topic of research and
improvement could be expected in the near future. Namely,
sparsity constraints and regularization seem to be promising
paths. Naturally, we also need enough samples of the class
under study to be available for the factorization to construct
a relevant concept bank, which might affect the quality of
the explanations on frugal applications where data is very

scarce.

A.2. Broader impact

We do hope that CRAFT helps in the transition to more
human-understandable ways of explaining neural network
models. It’s capacity to find easily understandable concepts
inside complex architectures and providing an indication of
where they are located in the image is – to the best of our
knowledge – unmatched. We also think that this method’s
structure is a step towards reducing confirmation bias: for
instance dataset’s labels are never used in this method, only
the model’s predictions. Without claiming to remove con-
firmation bias, the method focuses on what the model sees
rather than what we expect the model to see. We believe
this can help end-users build trust on computer vision mod-
els, and at the same time, provide ML practitioners with
insights into potential sources of bias in the dataset (e.g. the
ski pants in the astronaut/shovel example). Other methods
in the literature obtaining similar results require very spe-
cific architectures [6] or to train another model to generate
the explanations [21], so CRAFT provides a considerable
advantage in the matter of flexibility in comparison.

B. More results of CRAFT
B.1. Qualitative comparison with ACE

Figure S1 compares the examples of concepts found by
CRAFT against those found by ACE [24] for 3 classes of
Imagenette. For each class the concepts are ordered by im-
portance (the highest being the most important). ACE uses
a clustering technique and TCAV to estimate importance,
while CRAFT uses the method introduced in 3 and Sobol to
estimate importance. These examples illustrate one of the
weaknesses of ACE: the segmentation used can introduce bi-
ases through the baseline value used [19, 70]. The concepts
found by CRAFT seem distinct: (vault, cross, stained glass)
for the Church class, (dumpster, truck door, two-wheeler)
for the garbage truck, and (eyes, nose, fluffy ears) for the
English Springer.

B.2. Most important concepts.

We show more example of the 4 most importants con-
cepts for 6 classes: ‘Chain saw’, ‘English springer’, ‘Gas
pump’, ‘Golf ball’, ‘French horn’ and ‘Garbage Truck’ (Fig-
ure S2).
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Figure S1. Qualitative comparison. We compare concepts found by our method (top) to those extracted with ACE [24] (bottom) for the
classes Church, Garbage truck and English springer from ILSVRC2012 [10].
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Figure S2. CRAFT most important concepts. The 4 most important concepts ranked by importance (left to right) for the following
classes: ‘English springer’, ‘Chain saw’, ‘Gas pump’, ‘Golf ball’, ‘French horn’, and ‘Garbage truck’.
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B.3. Feature Visualization validation

Another way of interpreting concepts – as per [40] – is
to employ feature visualization methods: through optimiza-
tion, find an image that maximizes an activation pattern. In
our case, we used the set of regularization and constraints
proposed by [51], which allow us to successfully obtain re-
alistic images. In Figures [S3-S8], we showcase these syn-
thetic images obtained through feature visualization, along
with the segments that maximize the target concept. We ob-
serve that they do reflect the underlying concepts of interest.

Concretely, to produce those feature visualization, we
are looking for an image x∗ that is optimized to correspond
to a concept from the concept bank Wi. We use the so
called ‘dot-cossim’ loss proposed by [51], which give the
following objective:

x∗ = argmax
x∈X

〈hl(x),Wi〉
〈hl(x),Wi〉2

||hl(x)|| ||Wi||
− R(x)

With R(·), the regularizations applied to x – the default
regularizations in the Xplique library [16]. As for the spe-
cific parameters, we used Fourier preconditioning on the
image with a decay rate of 0.8 and an Adam optimizer
(lr = 1e− 1).

here

Figure S3. Feature visualization for chainsaw CRAFT con-
cepts.

Figure S4. Feature visualization for Church CRAFT concepts.

Figure S5. Feature visualization for english springer CRAFT
concepts.
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Figure S6. Feature visualization for french horn CRAFT con-
cepts.

Figure S7. Feature visualization for tench CRAFT concepts.

Figure S8. Feature visualization for golf CRAFT concepts.
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C. Backpropagating through the NMF block
C.1. Alternating Direction Method of Multipliers

(ADMM) for NMF

We recall that NMF decomposes the positive features
vector A ∈ Rn×p of n examples lying in dimension p, into
a product of positive low rank matrices U(A) ∈ Rn×r and
W(A) ∈ Rp×r (with r << min(n, p)), i.e the solution to
the problem:

min
U≥0,W≥0

1

2
‖A−UWT ‖2F . (4)

For simplicity we used a non-regularized version of the
NMF objective, following Algorithms 1 and 3 in paper [32],
based on ADMM [5]. This algorithm transforms the non-
linear equality constraints into indicator functions δ. Aux-
iliary variables Ũ,W̃ are also introduced to separate the
optimization of the objective on the one side, and the satis-
faction of the constraint on U,W on the other side. The
equality constraints Ũ = U,W̃ = W are linear and easily
handled by the ADMM framework through the associated
dual variables Ū,W̄. In our case, the problem in Equa-
tion 4 is transformed into:

min
U,Ũ,W,W̃

1

2
‖A− ŨW̃T ‖2F + δ(U) + δ(W),

s.t. Ũ = U,W̃ = W

with δ(H) =

{
0 if H ≥ 0,

+∞ otherwise.

(5)

Note that Ũ and U (resp. W̃ and W) seem redun-
dant: they are meant to be equal thanks to constraints
Ũ = U,W̃ = W. This is standard practice within ADMM
framework: introducing redundancies allows to disentangle
the (unconstrained) optimization of the objective on one
side (with Ũ and W̃) and constraint satisfaction on the
other side with U and W. During the optimization pro-
cess the variables Ũ,U (resp. W̃,W) are different, and
only become equal in the limit at convergence. The dual
variables Ū,W̄ control the balance between optimization
of the objective 1

2‖A − ŨW̃T ‖2F and constraint satisfac-
tion Ũ = U,W̃ = W. The constraints are simplified at
the cost of a non-smooth (and even a non-finite) objective
function 1

2‖A− ŪW̄T ‖2F + δ(U)+ δ(W) due to the term
δ(U) + δ(W). ADMM proceeds to create a so-called aug-
mented Lagrangian with l2 regularization ρ > 0:

L(A,U,W, Ũ,W̃, Ū,W̄) =

1

2
‖A− ŨW̃T ‖2F + δ(U) + δ(W)

+ ŪT (Ũ−U) + W̄T (W̃ −W)

+
ρ

2

(
‖Ũ−U‖22 + ‖W̃ −W‖22

)
.

(6)

This regularization ensures that the dual problem is well
posed and that it remain convex, even with the non smooth
and infinite terms δ(U) + δ(W). Once again, this is stan-
dard practice within ADMM framework. The (regularized)
problem associated to this Lagrangian is decomposed into
a sequence of convex problems that alternate minimization
over the U, Ũ, Ū and the W,W̃,W̄ triplets.

Ut+1 = argmin
U=Ũ

1

2
‖A− ŨWT

t ‖2F + δ(U) +
ρ

2
‖Ũ−U‖22.

(7)

Wt+1 = argmin
W=W̃

1

2
‖A−UtW̃

T ‖2F + δ(W) +
ρ

2
‖W̃ −W‖22.

(8)

This guarantees a monotonic decrease of the objective
function ‖A − ŨtW̃

T
t ‖2F . Each of these sub-problems is

thus solved with ADMM separately, by alternating mini-
mization steps of 1

2‖A−ŨWT
t ‖2F +ŪT (Ũ−U)+ ρ

2‖U−
Ũ‖22 over Ũ (i), with minimization steps of δ(U)+ ρ

2‖U−
Ũ‖22 over U (ii), and gradient ascent steps (iii) on the dual
variable Ū← Ū+ (Ũ−U). A similar scheme is used for
W updates. Step (i) is a simple convex quadratic program
with equality constraints, whose KKT [38, 45] conditions
yield a linear system with a Positive Semi-Definite (PSD)
matrix. Step (ii) is a simple projection of Ũ onto the convex
set δ−1(0). Finally, step (iii) is inexpensive.

Concretely, we solved the quadratic program using Con-
jugate Gradient [30], from jax.scipy.sparse.linalg.cg. This
indirect method only involves matrix-vector products and
can be more GPU-efficient than methods that are based
on matrix factorization (such as Cholesky decomposition).
Also, we re-implemented the pseudo code of [32] in Jax
for a fully GPU-compatible program. We used the primal
variables U0,W0 returned by sklearn.decompose.nmf as a
warm start for ADMM and observe that the high quality ini-
tialization of these primal variables considerably speeds up
the convergence of the dual variables.

C.2. Implicit differentiation

The Lagrangian of the NMF problem reads
L(U,W, Ū,W̄) = 1

2‖A −UWT ‖2F − ŪTU − W̄TW,
with dual variables Ū and W̄ associated to the constraints
U ≥ 0,W ≥ 0. It yields a function F based on the KKT
conditions [38, 45] whose optimal tuple U,W, Ū,W̄ is a
root.

For single NNLS problem (for example, with optimiza-
tion over U) the KKT conditions are:
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∇U

(
1
2‖A− ŨW̃T ‖2F + ŪT (−U)

)
= 0, stationarity,

−U ≤ 0, primal feasability,
Ū�U = 0, complementary slackness,
Ū ≥ 0, dual feasability.

(9)
By stacking the KKT conditions of the NNLS problems

the we obtain the so-called optimality function F :

F ((U,W, Ū,W̄),A) =


(UWT −A)W − Ū,

(WUT −AT )U− W̄,

Ū�U,

W̄ �W.
(10)

The implicit function theorem [25] allows us to use im-
plicit differentiation [3, 25, 44] to efficiently compute the
Jacobians ∂U

∂A and ∂W
∂A without requiring to back-propagate

through each of the iterations of the NMF solver:

∂(U,W, Ū,W̄)

∂A
= −(∂1F )−1∂2F . (11)

Implicit differentiation requires access to the dual vari-
ables of the optimization problem in equation 1, which
are not computed by Scikit-learn’s popular implementation.
Scikit-learn uses Block coordinate descent algorithm [7,17],
with a randomized SVD initialization. Consequently, we
leverage our implementation in Jax based on ADMM [5].

Concretely, we perform a two-stage backpropagation Jax
(2))Tensorflow (1) to leverage the advantage of each frame-
work. The lower stage (1) corresponds to feature extraction
A = hl(X) from crops of images X, and upper stage (2)
computes NMF A ≈ UWT .

We use the Jaxopt [4] library that allows efficient com-
putation of ∂(U,W,Ū,W̄)

∂A = −(∂1F )−1∂2F . The matrix
(∂1F )−1 is never explicitly computed – that would be too
costly. Instead, the system ∂1F

∂(U,W,Ū,W̄)
∂A = −∂2F is

solved with Conjugate Gradient [30] through the use of Ja-
cobian Vector Products (JVP) v 7→ (∂1F )v.

The chain rule yields:

∂U

∂X
=

∂A

∂X

∂U

∂A
.

Usually, most Autodiff frameworks (e.g Tensorflow, Py-
torch, Jax) handle it automatically. Unfortunately, combin-
ing two of those framework raises a new difficulty since they
are not compatible. Hence, we re-implement manually the
two stages auto-differentiation.

Since r is far smaller (r = 25 in all our experiments)
than input dimension X (typically 224× 244 for ImageNet

images), back-propagation is the preferred algorithm in this
setting over forward-propagation. We start by computing se-
quentially the gradients ∇XUi for all concepts 1 ≤ i ≤ r.
This amounts to compute v = ∇AUi with Implicit Dif-
ferentiation in Jax, convert the Jax array v into Tensor-
flow tensor, and then to compute ∇XUi = ∂A

∂X∇AUi =
∇X(hl(X) · v). The latter is easily done in Tensorflow. Fi-
nally we stack the gradients ∇XUi to obtain the Jacobian
∂U
∂X .

D. Sobol indices for concepts
We propose to formally derive the Sobol indices for the

estimation of the importance of concepts. Let us define
a probability space (Ω,A,P) of possible concept perturba-
tions. In order to build these concept perturbations, we start
from an original vector of concepts coefficient Û ∈ Rr and
use i.i.d. stochastic masks M = (M1, ...,Mr) ∈ M ⊆
[0, 1]r, as well as a perturbation operator π : A×M→ A
to create stochastic perturbation of Û that we call concept
perturbation U = π(Û,M).

Concretely, to create our concept perturbation we con-
sider the inpainting function as our perturbation operator
(as in [14,55,57]) : π(Ũ,M) = Ũ�M+ (1−M)µ with
� the Hadamard product and µ ∈ R a baseline value, here
zero. For the sake of notation, we will note f : A → R the
function mapping a random concept perturbation U from
the layer l to the output. We denote the set U = {1, ..., r},
u a subset of U , its complementary∼ u and E(·) the expec-
tation over the perturbation space. Finally, we assume that
f ∈ L2(A,P) i.e. |E(f(U))| < +∞.

The Hoeffding decomposition allows us to express the
function f into summands of increasing dimension, de-
noting fu the partial contribution of the concepts Uu =
(Ui)i∈u to the score f(U):

f(U) = f∅

+

r∑
i

fi(Ui)

+
∑

1⩽i<j⩽r

fi,j(Ui, Uj) + · · ·

+ f1,...,r(U1, ..., Ur)

=
∑
u⊆U

fu(Uu).

(12)

Eq. 12 consists of 2r terms and is unique under the fol-
lowing orthogonality constraint:

∀(u,v) ⊆ U2 s.t. u 6= v, E
(
fu(Uu)fv(Uv)

)
= 0.

(13)
Furthermore, orthogonality yields the characterization

fu(Uu) = E(f(U)|Uu) −
∑

v⊂u fv(Uv) and allows us
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to decompose the model variance as:

V(f(U)) =

r∑
i

V(fi(Ui))

+
∑

1⩽i<j⩽r

V(fi,j(Ui, Uj))

+ ...+ V(f1,...,r(U1, ..., Ur))

=
∑
u⊆U

V(fu(Uu)).

(14)

Building from Eq. 14, it is natural to characterize the
influence of any subset of concepts u as its own variance
w.r.t. the total variance. This yields, after normalization by
V(f(U)), the general definition of Sobol’ indices.

Definition D.1 (Sobol indices [67]). The sensitivity index
Su which measures the contribution of the concept set Uu

to the model response f(U) in terms of fluctuation is given

by:

Su =
V(fu(Uu))

V(f(U))

=
V(E(f(U)|Uu))−

∑
v⊂u V(E(f(U)|Uv))

V(f(U))
.

(15)

Sobol indices give a quantification of the importance of
any subset of concepts with respect to the model decision,
in the form of a normalized measure of the model output
deviation from f(U). Thus, Sobol indices sum to one :∑

u⊆U Su = 1.
Furthermore, the framework of Sobol’ indices enables us

to easily capture higher-order interactions between features.
Thus, we can view the Total Sobol indices defined in 2 as
the sum of of all the Sobol indices containing the concept i
: STi

=
∑

u⊆U ,i∈u Su. Concretely, we estimate the total
Sobol indices using the Jansen estimator [36] and Quasi-
Monte carlo Sequence (Sobol LPτ sequence).
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E. Human experiments
We first describe how participants were enrolled in our

studies, then the general experimental design they went
through.

E.1. Utility evaluation

Participants The participants that went through our
experiments are users from the online platform Amazon
Mechanical Turk (AMT), specifically, we recruit users with
high qualifications (number of HIT completed = 5000 and
HIT accepted > 98%). All participants provided informed
consent electronically in order to perform the experiment
(∼ 5− 8 min), for which they received 1.4$.

For the Husky vs. Wolf scenario, n = 84 participants
passed all our screening and filtering process, respectively
n = 32 for CRAFT, n = 22 for ACE and n = 22 for
CRAFTCO.

For the Leaves scenario, after filtering, we analyzed data
from n = 87 participants, respectively n = 32 for CRAFT,
n = 24 for ACE and n = 31 for CRAFTCO.

For the "Kit Fox" vs. "Red Fox" scenario, the results
come from n = 79 participants who passed all our screen-
ing processes, respectively n = 22 for CRAFT, n = 31 for
ACE and n = 26 for CRAFTCO.

General study design We followed the experimental de-
sign proposed by Colin and Fel et al. [8], in which explana-
tions are evaluated according to their ability to help training
participants at getting better at predicting their models’ de-
cisions on unseen images.

Each of those participants are only tested on a single con-
dition to avoid possible experimental confounds.

The main experiment is divided into 3 training sessions
(with 5 training samples in each) each followed by a brief
test. In each individual training trial, an image was pre-
sented with the associated prediction of the model, together
with an explanation. After a brief training phase (5 sam-
ples), participants’ ability to predict the classifier’s output
was evaluated on 7 new samples during a test phase. Dur-
ing the test phase, no explanation was provided. We also

use the reservoir that subjects can refer to during the testing
phase to minimize memory load as a confounding factor.

We implement the same 3-stage screening process as
in [8]: First we filter participants not successful at the prac-
tice session done prior to the main experiment used to teach
them the task, then we have them go through a quiz to make
sure they understood the instructions. Finally, we add a
catch trial in each testing phase –that users paying attention
are expected to be correct on– allowing us to catch uncoop-
erative participants.

E.2. Validation of Recursivity

Participants Behavioral accuracy data were gathered
from n = 73 participants. All participants provided in-
formed consent electronically in order to perform the ex-
periment (∼ 4− 6 min). The protocol was approved by the
University IRB and was carried out in accordance with the
provisions of the World Medical Association Declaration
of Helsinki. For each of the 2 experiment tested, we had
prepared filtering criteria for uncooperative people (namely
based on time), but all participants passed these filters.

General study design For the first experiment – consist-
ing in finding the intruder among elements of the same con-
cept and an element from a different concept (but of the
same class, see Figure S10b) – the order of presentation is
randomized across participants so that it does not bias the
results. Moreover, in order to avoid any bias coming from
the participants themselves (one group being more success-
ful than the other) all participants went through both condi-
tions of finding intruders in batches of images coming from
either concepts or sub-concepts. Concerning experiment 2,
the order was also randomized (see Figure S10c).

The participants had to successively find 30 intruders (15
block concepts and 15 block sub-concepts) for experiment
1 and then make 15 choices (sub-concept vs concept) for
experiment 2, see Figure S10a.

The expert participants are people working in machine
learning (researchers, software developers, engineers) and
have participated in the study following an announcement
in the authors’ laboratory/company. The other participants
(Laymen) have no expertise in machine learning.
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(a) Utility experiment. Training trials taken from the Husky vs. Wolf scenario (left) and the Leaves scenario (right).

(a) Recursivity Experiment Website.

(b) Binary choice experiment.

(c) Intruder experiment.
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F. Fidelity experiments

Figure S11. (1) Deletion curves for different concept extraction methods, Sobol outperforms TCAV not only for NMF to correctly
estimate concept importance (lower is better). (2) Insertion curves for different concept extraction methods, Sobol outperforms
TCAV to correctly estimate concept importance (higher is better).

For our experiments on the concept importance measure, we focused on certain classes of ILSRVC2012 [10] and used
a ResNet50V2 [29] that had already been trained on this dataset. Just like in [24, 77], we measure the insertion and
deletion metrics for our concept extraction technique – as well as concepts vectors extracted using PCA, ICA and RCA
as dimensionality reduction algorithms, see Figure S11 – and we compare them when we add/remove the concepts as
ranked by the TCAV score [40] and by the Sobol importance score. As originally explained in [55], the objective of
these metrics is to add/remove parts of the input according to how much an explainability method considers that it is
influential and looking at the speed at which the logit for the predicted class increases/decreases.
In particular, for our experimental evaluations, we have randomly chosen 100000 images from ILSVRC2012 [10] and
computed the deletion and insertion metrics for 5 different seeds – for a total of half a million images. In Figure S11,
the shade around the curves represent the standard deviation over these 5 experiments.
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G. Sanity Check
Following the work from [1], we performed a sanity

check on our method, by running the concept extraction
pipeline on a randomized model. This procedure was per-
formed on a ResNet-50v2 model with randomized weights.
As showcased in Figure S12, the concepts drastically differ
from trained models, thus proving that CRAFT passes the
sanity check.

Figure S12. Sanity check of the method: we ran the method
on a Resnet50 with randomized weights, and extracted the 3 most
relevant concepts for the class ‘Chain saw’. When weights are
randomized, concepts are mainly based on color histograms.
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