
Figure 5. Qualitative comparison with other attribution methods. To allow for better visualization, the gradient-based methods (Saliency,

Gradient-Input, SmoothGrad, Integrated-Gradient, VarGrad) are clipped at the 2nd percentile. For more results and details on each method

and choice of hyperparameters, see Appendix.

MNIST Cifar-10 ImageNet

Del.³ Ins.↑ Fid.↑ Rob.³ Time Del.³ Ins.↑ Fid.↑ Rob.³ Time Del.³ Ins.↑ Fid.↑ Rob.³ Time

Greedy-AS [29] .260 .497 .110 .061 335 .205 .264 -.003 .013 4618 .088 .047 .023 .612 180056

Greedy-AO .237 .572 .244 .063 290 .162 .283 .041 .024 2874 .086 .050 .023 .752 26762

EVAemp .101 .621 .378 .067 14.4 .184 .270 .397 .022 186.6
.070 .289 .048 .758 6454

EVA (ours) .089 .736 .428 .069 1.29 .164 .290 .352 .025 12.7

Table 3. Results on Deletion (Del.), Insertion (Ins.), µFidelity (Fid.) and Robustness-Sr (Rob.) metrics. Time in seconds corresponds to

the generation of 100 explanations on an Nvidia P100. Note that EVA is the only method with guarantees that the entire set of possible

perturbations has been exhaustively searched. Verified perturbation analysis with IBP + Forward + Backward is used for MNIST, with

Forward only for CIFAR-10 and with our hybrid strategy described in Section.3.4 for ImageNet. Grad-CAM and Grad-CAM++ are not

calculated on the MNIST dataset since the network only has dense layers. Greedy-AO is the equivalent of Greedy-AS but with the AO

estimator. The first and second best results are in bold and underlined, respectively.

A. Qualitative comparison

Regarding the visual consistency of our method, Figure 5

shows a side-by-side comparison between our method and

the attribution methods tested in our benchmark. To allow

better visualization, the gradient-based methods were 2 per-

centile clipped.

B. Ablation studies

For a more thorough understanding of the impact of the

different components that made EVA - the adversarial over-

lap and the use of verification tools- we proposed differ-

ent ablation versions of EVA which are the following: (i)
Empirical EVA, (ii) GreedyAO which is the equivalent of

Greedy-AS but with the AO estimator. This allow us to per-

form ablation on the proposed AO estimator. Results can be

found in Table 3.

B.1. Empirical EVA.

In this section, we describe the ablation consisting in es-

timating EVA without any use of verified perturbation anal-

ysis – thus without any guarantees.

A first intuitive approach would be to replace verifica-

tion perturbation analysis with adversarial attacks (as used

in Greedy-AS [29]); we denote this approach as Greedy-AO.

In addition, we go further with a purely statistical approach

based on a uniform sampling of the domain; we denote this



approach EVAemp.

This estimator proves to be a very good alternative in

terms of computation time but also with respect to the con-

sidered metrics as shown in Section 4. Unfortunately the

lack of guarantee makes it not as relevant as EVA. Formally,

it consists in directly estimating empirically AO using N
randomly sampled perturbations.

ÂO(x,B) = max
δ1,···δi,···δN

iid
∼U(B)

c′ ̸=c

fc′(x+ δi)− fc(x+ δi).

(3)

We then denote accordingly EVAemp which uses ÂO:

EVAemp(x,u,B) = ÂO(x,B)− ÂO(x,Bu) (4)

C. EVA and Robustness-Sr

We show here that the explanations generated by

EVA provide an optimal solution from a certain stage to

the Robustness-Sr metric proposed by [29]. We admit a

unique closest adversarial perturbation δ∗ = min ||δ||p :
f(x + δ) ̸= f(x), and we define ε, the radius of B as

ε = ||δ||p. Note that ||δ||p can be obtained by binary search

using the verified perturbation analysis method.

We briefly recall the Robustness-Sr metric. With x =
(x1, ..., xd), the set U = {1, ..., d}, u a subset of U : u ¦ U
and u its complementary. Moreover, we denote the mini-

mum distance to an adversarial example ε∗u:

ε∗u =
{

min ||δ||p : f(x+ δ) ̸= f(x), δu = 0
}

The Robustness-Sr score is the AUC of the curve

formed by the points {(1, ε∗(1)), ..., (d, ε
∗
(d))} where ε∗(k) is

the minimum distance to an adversarial example for the k
most important variables. From this, we can deduce that

||δ∗|| f ε∗u, ∀u ¦ {1, ..., d}.

The goal here is to minimize this score, which means for

a number of variables |u| = k, finding the set of variables

u∗ such that ε∗u is minimal. We call this set the optimal set

at k.

Definition C.1. The optimal set at k is the set of variables

u∗
k such that

u∗
k = argmin ε∗u

u¦U, |u|=k

.

We note that finding the minimum cardinal of a variable

to guarantee a decision is also a standard research problem

[32, 33] and is called subset-minimal explanations.

Intuitively, the optimal set is the combination of vari-

ables that allows finding the closest adversarial example.

Thus, minimizing Robustness-Sr means finding the opti-

mal set u∗ for each k. Note that this set can vary drastically

from one step to another, it is therefore potentially impossi-

ble for attribution to satisfy this optimality criterion at each

step. Nevertheless, an optimal set that is always reached at

some step is the one allowing to build δ∗. We start by defin-

ing the notion of an essential variable before showing the

optimality of δ∗.

Definition C.2. Given an adversarial perturbation δ, we

call essentials variables u all variables such that |δi| >
0, i ∈ u. Conversely, we call inessentials variables vari-

ables that are not essential.

For example, if δ∗ has k essential variables, it is reach-

able by modifying only k variables. This allows us to char-

acterize the optimal set at step k.

Proposition C.3. Let u be the set of essential variables of

δ∗, then u is an optimal set for k, with k ∈ [[|u|, d]].

Proof. Let v be a set such that ε∗v < ε∗u, then ε∗v < ||δ∗||
which is a contradiction.

Specifically, as soon as we have the variables allowing

us to build δ∗, then we reach the minimum possible for

Robustness-Sr. We will now show that EVA allows us to

reach this in |u| steps, with |u| f d by showing (1) that δ∗

essential variables obtain a positive attribution and (2) that

δ∗ inessential variables obtain a zero attribution.

Proposition C.4. All essential variables u w.r.t δ∗ have a

strictly positive importance score EVA(u) > 0.

Proof. Let us assume that i is essential and EVA(i) = 0,

then F (B) = F (Bi) which implies

max
δ∈B
c′ ̸=c

fc′(x+δ)−fc(x+δ) = max
δ′∈Bi

c′ ̸=c

fc′(x+δ′)−fc(x+δ′)

by uniqueness of the adversarial perturbation, δ = δ′ which

is a contradiction as δ′ /∈ Bi since δ′i ̸= 0 by definition of

an essential variable. Thus xi cannot be essential, which is

a contradiction.

Essentially, if the variable i is necessary to reach δ∗, then

removing it prevents the adversarial example from being

reached and lowers the adversarial overlap, giving a strictly

positive attribution.

Proposition C.5. All inessential variables v w.r.t. δ∗ have

a zero importance score EVA(v) = 0.

Proof. With i being an inessential variable, then δ∗i = 0. It

follow that δ∗ ∈ Bi ¦ B. Thus

F (B) = max
δ∈B
c′ ̸=c

fc′(x+ δ)− fc(x+ δ)

= fc′(x+ δ∗)− fc(x+ δ∗)



as δ∗ is the unique adversarial perturbation in B, similarly

F (Bi) = max
δ′∈B
c′ ̸=c

fc′(x+ δ′)− fc(x+ δ′)

= fc′(x+ δ∗)− fc(x+ δ∗)

thus F (B) = F (Bi) and EVA(i) = 0.

Finally, since EVA ranks the essential variables of δ∗

before the inessential variables, and since δ∗ is the optimal

set from the step |u| to the last one d, then EVA provide the

optimal set, at least from the step |u|.

Theorem C.6. EVA provide the optimal set from step |u|
to the last step. With u the essential variables of δ∗,

EVA will rank the u variables first and provide the optimal

set from the step |u| to the last step.

Proof. Let u denote the essential variables of δ∗ and v the

inessential variables. Then according to Proposition C.4

and Proposition C.5, ∀i ∈ u, ∀j ∈ v : EVA(i) > EVA(j).
It follow that u are the most important variables at step |u|.
Finally, according to Proposition C.3, u is the optimal set

for k, with k ∈ [[|u|, d]].

Figure 6. EVA yield optimal subset of variable from step |u|.
Robustness-Sr measures the AUC of the distances to the nearest

adversary for the k most important variables. With δ
∗ the nearest

reachable adversarial perturbation around x, then EVA yield the

optimal set – the variables allowing to reach the nearest adversarial

example for a given cardinality – at least from ||u|| ≤ d step to

the last one, u being the so-called essential variables.

D. EVA and Stability

Stability is one of the most crucial properties of an ex-

planation. Several metrics have been proposed [7, 69] and

the most common one consists in finding around a point

x, another point z (in a radius r) such that the explanation

changes the most according to a given distance between ex-

planation d and a distance over the inputs Ä:

Stability(x, g) = max
z:ρ(z,x)fr

d(g(x), g(z))

and g an explanation functional. It can be shown that the

proposed EVA estimator is bounded by the stability of the

model as well as by the radii ε and r, ε being the radius of

B and r the radius of stability. From here, we assume d and

Ä are the ℓ2 distance.

Let assume that f is L-lipschitz. We recall that a func-

tion f is said L-lipschitz over X if and only if ∀(x, z) ∈
X 2, ||f(x)− f(z)|| f ||x− z||.

Theorem D.1. EVA has bounded Stability Given a L-

lipschitz predictor f , ε the radius of B and r the Stability

radius, then

Stability(x,EVA) f 4L(ε+ r)

Proof. With c′ ̸= c we denote m(x) = fc′(x) − fc(x).
We note that by additivity of the Lipschitz constant m is

2L-Lipschitz.

Stability(x,EVA) = max
z:ρ(z,x)fr

||EVA(x),EVA(z)||

= max
z:ρ(z,x)fr

||max
δ

m(x+ δ)−max
δu

m(x+ δu)

−max
δ

m(z + δ) + max
δu

m(z + δu)||

f max
z:ρ(z,x)fr

||max
δ

m(x+ δ)−max
δ

m(z + δ)||

+ ||max
δu

m(z + δu)−max
δu

m(x+ δu)||

= max
γ:||γ||fr

||max
δ

m(x+ δ)−max
δ

m(x+ δ + γ)||

+ ||max
δu

m(x+ δu + γ)−max
δu

m(x+ δu)||

f 2L(||δ||+ ||γ||) + 2L(||δ||+ ||γ||)

= 4L(ε+ r)

E. Attribution methods

In the following section, we give the formulation of the

different attribution methods used in this work. The library

used to generate the attribution maps is Xplique [18]. By

simplification of notation, we define f(x) the logit score

(before softmax) for the class of interest (we omit c). We re-

call that an attribution method provides an importance score

for each input variable xi. We will denote the explanation

functional mapping an input of interest x = (x1, ..., xd) ∈
X as g : X → R

d.

Saliency [56] is a visualization technique based on the

gradient of a class score relative to the input, indicating in an

infinitesimal neighborhood, which pixels must be modified

to most affect the score of the class of interest.



g(x) = ||∇xf(x)||

Gradient » Input [55] is based on the gradient of a class

score relative to the input, element-wise with the input, it

was introduced to improve the sharpness of the attribution

maps. A theoretical analysis conducted by [3] showed that

Gradient » Input is equivalent to ϵ-LRP and DeepLIFT [55]

methods under certain conditions – using a baseline of zero,

and with all biases to zero.

g(x) = x» ||∇xf(x)||

Integrated Gradients [65] consists of summing the gra-

dient values along the path from a baseline state to the

current value. The baseline x0 used is zero. This inte-

gral can be approximated with a set of m points at regu-

lar intervals between the baseline and the point of interest.

In order to approximate from a finite number of steps, we

use a Trapezoidal rule and not a left-Riemann summation,

which allows for more accurate results and improved per-

formance (see [62] for a comparison). For all the experi-

ments m = 100.

g(x) = (x− x0)

∫ 1

0

∇xf(x0 + ³(x− x0)))d³

SmoothGrad [61] is also a gradient-based explanation

method, which, as the name suggests, averages the gradi-

ent at several points corresponding to small perturbations

(drawn i.i.d from an isotropic normal distribution of stan-

dard deviation Ã) around the point of interest. The smooth-

ing effect induced by the average help reducing the visual

noise, and hence improve the explanations. The attribu-

tion is obtained by averaging after sampling m points. For

all the experiments, we took m = 100 and Ã = 0.2 ×
(xmax − xmin) where (xmin,xmax) being the input range

of the dataset.

g(x) = E
δ∼N (0,Iσ)

(∇xf(x+ δ))

VarGrad [28] is similar to SmoothGrad as it employs

the same methodology to construct the attribution maps: us-

ing a set of m noisy inputs, it aggregates the gradients using

the variance rather than the mean. For the experiment, m
and Ã are the same as Smoothgrad. Formally:

g(x) = V
δ∼N (0,Iσ)

(∇xf(x+ δ))

Grad-CAM [53] can only be used on Convolutional

Neural Network (CNN). Thus we couldn’t use it for the

MNIST dataset. The method uses the gradient and the

feature maps Ak of the last convolution layer. More pre-

cisely, to obtain the localization map for a class, we need

to compute the weights ³k
c associated to each of the fea-

ture map activation Ak, with k the number of filters and

Z the number of features in each feature map, with ³c
k =

1
Z

∑

i

∑

j
∂f(x)

∂Ak
ij

and

g = max(0,
∑

k

³c
kA

k)

As the size of the explanation depends on the size (width,

height) of the last feature map, a bilinear interpolation is

performed in order to find the same dimensions as the input.

For all the experiments, we used the last convolutional layer

of each model to compute the explanation.

Grad-CAM++ (G+) [10] is an extension of Grad-CAM

combining the positive partial derivatives of feature maps

of a convolutional layer with a weighted special class score.

The weights ³
(k)
c associated to each feature map is com-

puted as follow :

³c
k =

∑

i

∑

j

[

∂2f(x)

(∂A
(k)
ij

)2

2 ∂2f(x)

(∂A
(k)
ij

)2
+
∑

i

∑

j A
(k)
ij

∂3f(x)

(∂A
(k)
ij

)3

]

Occlusion [71] is a sensitivity method that sweeps a

patch that occludes pixels over the images using a baseline

state and use the variations of the model prediction to de-

duce critical areas. For all the experiments, we took a patch

size and a patch stride of 1
7 of the image size. Moreover, the

baseline state x0 was zero.

g(x)i = f(x)− f(x[xi=0])

RISE [48] is a black-box method that consists of prob-

ing the model with N randomly masked versions of the in-

put image to deduce the importance of each pixel using the

corresponding outputs. The masks m ∼ M are generated

randomly in a subspace of the input space. For all the ex-

periments, we use a subspace of size 7× 7, N = 6000, and

E(M) = 0.5.

g(x) =
1

E(M)N

N
∑

i=0

f(x»mi)mi

Greedy-AS [29] is a greedy-like method which aggre-

gates step by step the most important pixels – the pixels that

allow us to obtain the closest possible adversarial example.

Starting from an empty set, we evaluate the importance of

the variables at each step. Formally, with u the feature set

chosen at the current step and u his complement. We define

b : P(u) → {0, 1}|u| a function which binarizes a sub-set

of the unchosen elements. Then, given the set of selected

elements u, we find the importance of the elements still not

selected, while taking into account their interactions. This

amounts to solving the following regression problem:



Figure 7. Targeted Explanations Attribution-generated explana-

tions for a decision other than the one predicted. Each column

represents the class explained, e.g., the first column looks for an

explanation for the class ‘0’ for each of the samples. As indicated

in section 4.3, the red areas indicate that a black line should be

added and the blue areas that it should be removed. More exam-

ples are available in the Appendix.

wt, ct = argmin
∑

v∈P(u)

(

(wtb(v) + c)− v(u ∪ v)
)2

The weights obtained indicate the importance of each

variable by taking into account these interactions. We spec-

ify that v(·) is defined here as the minimization of the dis-

tance to the nearest adversarial example using the variables

u ∪ v. In the experiments, the minimization of this objec-

tive is approximated using PGD [44] adversarial attacks, a

regression step (computation of wt) adds 10% of the vari-

ables and v is sampled using 1000 samples from P(u). Fi-

nally, the variables added first to get a better score.

F. Evaluation

For the purpose of the experiments, three fidelity metrics

have been chosen. For the whole set of metrics, f(x) score

is the score after the softmax of the models.

Deletion. [48] The first metric is Deletion, it consists in

measuring the drop in the score when the important vari-

ables are set to a baseline state. Intuitively, a sharper drop

indicates that the explanation method has well-identified

the important variables for the decision. The operation is

repeated on the whole image until all the pixels are at a

baseline state. Formally, at step k, with u the most im-

portant variables according to an attribution method, the

Deletion(k) score is given by:

Deletion(k) = f(x[xu=x0])

We then measure the AUC of the Deletion scores. For all

the experiments, and as recommended by [29], the baseline

state is not fixed but is a value drawn on a uniform distribu-

tion x0 ∼ U(0, 1).

Insertion. [48] Insertion consists in performing the in-

verse of Deletion, starting with an image in a baseline state

and then progressively adding the most important variables.

Formally, at step k, with u the most important variables ac-

cording to an attribution method, the Insertion(k) score is

given by:

Insertion(k) = f(x[xu=x0])

The baseline is the same as for Deletion.

µFidelity [7] consists in measuring the correlation be-

tween the fall of the score when variables are put at a base-

line state and the importance of these variables. Formally:

µFidelity = Corr
u¦{1,...,d}

|u|=k

(

∑

i∈u

g(x)i,f(x)− f(x[xu=x0])

)

For all experiments, k is equal to 20% of the total number

of variables and the baseline is the same as the one used by

Deletion.

G. Models

The models used were all trained using Tensorflow [1].

For MNIST, the model is a stacking of 5 dense layers com-

posed of (256, 128, 64, 32, 10) neurons respectively. It

achieves an accuracy score above 98% on the test set. Con-

cerning the Cifar-10 model, it is composed of 3 Convolu-

tional layers of (128, 80, 64) filters, a MaxPooling (2, 2),

and to Dense layer of (64, 10) neurons respectively, and

achieves 75% of accuracy on the test set. For ImageNet, we

used a pre-trained VGG16 [57].

H. Targeted explanations

In order to generate targeted explanations, we split the

calls to EVA(·, ·) in two: the first one with ‘positive’ pertur-

bations from B(+) (only positive noise), a call with ‘nega-

tive’ perturbations from B(−) (only negative-valued noise)

as defined in Section 4.3.

We then get two explanations, one for positive noise

φ
(+)
u = Fc(B

(+)(x)) − Fc(B
(+)
u (x)), the other for neg-

ative noise φ
(−)
u = Fc(B

(−)(x)) − Fc(B
(−)
u (x)). Intu-

itively, high importance for φ
(+)
u means that the model is



sensitive to the addition of a white line. Conversely, high

importance for φ
(−)
u means that removing it changes the

decision model. These two explanations being opposed, we

construct the final explanation as φu = φ
(+)
u −φ

(−)
u . More

examples of results are given in Fig. 7.


