
Appendix

We provide a table of contents below for better navigation of
the appendix.
Appendix A provides details of evaluation setup.
Appendix B introduces the settings of backdoor attacks on
self-supervised learning that are adopted in our evaluation.
Appendix C studies the triggers inverted by DECREE.
Appendix D uses ROC curve to quantify the effectiveness
of DECREE.
Appendix E evaluates the efficiency of DECREE in com-
parison with two SOTA backdoor scanning techniques.
Appendix F designs an adaptive attack aiming to evade our
detection.
Appendix G.1 studies the effectiveness of DECREE against
different trigger patterns and sizes.
Appendix G.2 shows the effectiveness of threshold τ .
Appendix H explores the feasibility of adapting 2 exist-
ing advanced attacks from supervised learning into self-
supervised learning setting.
Appendix I discusses on 3 emerging SSL backdoor attacks.

A. Evaluation Setup

Table 4 shows the statistics of evaluated attacks, datasets,
and encoders. Column 1 denotes the attack category. Col-
umn 2 shows the pre-training datasets used for constructing
encoders. Columns 3-5 present the model architecture, input
image shape, and the number of (trainable) model param-
eters. Column 6 shows the number of clean encoders for
each setting. For backdoored encoders, we choose one label
from each attack datasets as attack target label. For example,
when attack dataset is GTSRB, we choose a “priority” image
as attack target in Image-on-Image and Image-on-Pair set-
tings and choose the word “priority” to fill in prompts in Text-
on-Pair setting. We introduce more details in Appendix B.
We evaluate on three attack datasets that are shown in
Columns 7-9. The numbers denote how many backdoored en-
coders are trained for the corresponding attack datasets. In to-
tal, we have 444 encoders (111 benign and 333 backdoored).

B. Attack Settings

B.1. Image-on-Image & Image-on-Pair

For Image-on-Image and Image-on-Pair attacks, we fol-
low the code released by BadEncoder [20] to construct back-
doored encoders. Specifically, the main idea is that, given a
clean encoder E, the attacker aims to get a trojaned encoder
E′ such that E and E′ satisfy the following 3 properties: (1)
For each clean input image x, E(x) and E′(x) should be
similar. (2) For the target image r, E(r) and E′(r) should
be similar. (3) For the clean image stamped with trigger e,
E′(x⊕ e) and E′(r) should be similar.

For each attack datasets, we use the same target images as
[20]. We select trojaned encoders that can train downstream
classifiers with ASR > 99% and accuracy > 70%.

B.2. Text-on-Pair

For Text-on-Pair attack, we follow the method introduced
in [3]. The main idea is to construct a malicious training
dataset P (size of which is a small fraction of pre-training
dataset size). P is defined as P = {(xi ⊕ e, c)}i, where xi

are clean images, e is trigger and c is attack target caption.
The caption is formed by filling in prompts (shown in Ta-
ble 6) with a word of interest from attack datasets(shown in
Table 5). We choose backdoored encoders with z-score [3]
higher than 2.5.

C. Triggers Inverted by DECREE

In Figure 7, we show the triggers inverted by DECREE.
The ground truth trigger is a white square located at the
right bottom of the image. For Figure 4a 4b 4c, the ground
truth trigger shape (height, width, channel) is (10, 10, 3).
For Figure 4d 4e 4f, the ground truth trigger shape (height,
width, channel) is (24, 24, 3).

For each setup, we show a trigger inverted from clean
encoder, and a trigger inverted from backdoored encoder.
We also report the value of PL1-Norm for each trigger in
the figure. Notice that (1) triggers inverted from backdoored
encoders exploit significantly less pixels than those inverted
from clean encoders, and thus their PL1-Norm are lower,
(2) triggers inverted from backdoored encoders tend to clus-
ter and shift towards the corner, while those inverted from
clean encoders are likely to evenly distribute throughout the
entire image. For example, in Figure 7a, the trigger from
clean encoder scatters over almost the whole image, while
the trigger from the backdoored encoder centralizes at the
lower right part of the image. One can still make similar
observations under Text-on-Pair attack. Take Figure 7f as an
example. The trigger from clean encoder evenly distributes
across the image, while the trigger from backdoored encoder
densely distributes in the lower right region.

D. ROC of DECREE on Different Datasets
We further use the ROC (Receiver Operating Character-

istic) to quantify the effectiveness of our detection method.
Given a set of encoders, DECREE inverts triggers from each
of them and computes PL1-Norm. After that, to distinguish
the backdoored encoders from the benign ones, one can set
a threshold for PL1-Norm. The ROC curves are shown in
Figure 8. These curves depict how the True Positive Rate
(TPR, marked by the vertical axis) and False Positive Rate
(FPR, marked by the horizontal axis) change when different
thresholds are selected. The green curve denotes the ROC
obtained on all the 444 encoders. That is, we set one univer-



Table 4. Model Statistics

Attack
Category

Pre-training
Dataset

Model
Arch

Input
Size

#Params
Clean

Encoder
Attack Datasets

GTSRB SVHN STL-10

Image-on-Image
CIFAR10

ResNet18 32×32×3 11,168,832 30 30 30 30
ResNet34 32×32×3 21,276,992 30 30 30 30
ResNet50 32×32×3 23,500,352 15 15 15 15

ImageNet ResNet50 224×224×3 25,557,032 12 12 12 12

Image-on-Pair CLIP Dataset ResNet50 224×224×3 38,316,896 12 12 12 12

Text-on-Pair CLIP Dataset ResNet50 224×224×3 38,316,896 12 12 12 12

Cifar10-rn18

Ground Truth
L1-norm=300.0

Clean Encoder
PL-Norm=0.154
L1-Norm=472.7

Backdoored Encoder
PL-Norm=0.047
L1-norm=143.7

(a) CIFAR10-ResNet18

Cifar10-rn34

Ground Truth
L1-norm=300.0

Clean Encoder
PL-Norm=0.118
L1-norm=361.9

Backdoored Encoder
PL-Norm=0.045
L1-norm=141.0

(b) CIFAR10-ResNet34

Cifar10-rn50

Ground Truth
L1-norm=300.0

Clean Encoder
PL-Norm=0.191
L1-norm=585.5

Backdoored Encoder
PL-Norm=0.043
L1-norm=130.7

(c) CIFAR10-ResNet50

Imagenet-rn50

Ground Truth
L1-norm=1728.0

Clean Encoder
PL-Norm=0.111

L1-norm=16683.9

Backdoored Encoder
PL-Norm=0.053
L1-norm=7932.0

(d) ImageNet-ResNet50

Clip-img

Ground Truth
L1-norm=1728.0

Clean Encoder
PL-Norm=0.167

L1-norm=25205.1

Backdoored Encoder
PL-Norm=0.054
L1-norm=8060.1

(e) CLIP-Image

Clip-text

Ground Truth
L1-norm=1728.0

Clean Encoder
PL-Norm=0.167

L1-norm=25205.1

Backdoored Encoder
PL-Norm=0.054
L1-norm=8193.1

(f) CLIP-Text

Figure 7. Inverted Triggers. Subfigures 4a 4b 4c 4d are Image-on-Image attacks. Subfigure 4e is Image-on-Pair attack. Subfigure 4f is
Text-on-Pair attack. Note that our goal is to do detection and thus it is not that necessary to invert exactly the same trigger as the injected one.
DECREE is effective at detection since it quantitatively leverages the proposed metric PL1-Norm to decide whether the given encoder is
backdoored or not. Visually, triggers inverted from backdoored encoders share common features with ground truth triggers, as they tend to
cluster and shift towards the corner while those inverted from clean encoders are evenly distributed throughout the entire image.

Table 5. Attack Target Words in Text-on-Pair Attack

Attack Dataset Target Word

GTSRB “priority”
SVHN “one”
STL-10 “truck”

sal threshold for all the setups, regardless of the architectures
of encoders or the dimensions of data samples. We can see
that the TPR increases sharply with an almost zero FPR.
It achieves an AUC of 0.998, which indicates PL1-Norm
effectively distinguishes benign encoders from backdoored

Table 6. Prompt List in Text-on-Pair Attack

“a photo of a {}.” “a photo of the {}.”
“a blurry photo of a {}.” “a blurry photo of the {}.”
“a black and white photo of a {}.” “a black and white photo of the {}.”
“a low contrast photo of a {}.” “a low contrast photo of the {}.”
“a high contrast photo of a {}.” “a high contrast photo of the {}.”
“a bad photo of a {}.” “a bad photo of the {}.”
“a good photo of a {}.” “a good photo of the {}.”
“a photo of a small {}.” “a photo of the small {}.”
“a photo of a big {}.” “a photo of the big {}.”



Table 7. Detection time consumed by existing backdoor scanners and our DECREE

Network Training Classifier Neural Cleanse ABS DECREE

ASR Time (m) FN Time (m) FN Time (m) FN Time (m)

ResNet18 1.0 64.66 ± 10.30 0 4.75 ± 0.45 0 2.80 ± 0.04 0 0.26 ± 0.01
ResNet34 1.0 63.99 ± 10.33 1 9.71 ± 1.44 0 5.52 ± 0.87 0 0.33 ± 0.01

Figure 8. ROC of Detection

encoders without any knowledge about specific setups. Thus
DECREE is generally effective on different encoders and
different datasets. Moreover, if we have the knowledge about
the pre-training dataset, which is a reasonable assumption in
the real-world scenario, the AUC further improves to 0.999
for CIFAR10 and 1.000 for ImageNet and CLIP. Their ROC
are depicted by brown, red, and orange curves, respectively.

E. Time Efficiency
We evaluate the efficiency of DECREE in comparison

with two SOTA backdoor scanning techniques, i.e., Neural
Cleanse (NC) [50] and ABS [31]. For both ResNet18 and
ResNet34 architectures, we conduct experiments on 10 back-
doored encoders pre-trained on CIFAR10. The attack target
is a “one” image from the attack dataset SVHN.

Note that DECREE is an order of magnitude faster than
the other two baselines, even without considering the training
time for downstream classifiers. This is because DECREE
generates just one trigger for each encoder and do not have
to scan each label like what NC and ABS do. In addition,
we find that NC have one False Negative during the experi-
ment, further validating the necessity and motivation of our
DECREE.

F. Adaptive Attack
In addition to existing attacks, We design an adaptive

attack, as explained in Section 5.4. α in Eq. 8 is a hyper-
parameter that controls the cosine similarity loss during
the attack. Intuitively, when α becomes larger, the images
stamped with trigger will share less similar embeddings.

Table 8. Encoders Adaptively Attacked by Eq. 8

Accuracy ASR L1-Norm PL1-Norm

α = 0 76.22 99.73 171.65 0.056
α = 0.5 72.95 93.60 258.57 0.084
α = 1.0 72.48 69.90 430.08 0.140
α = 2.0 72.08 31.00 847.45 0.276

When α is near to zero, the images with trigger tend to have
extremely similar embeddings, which also means they are
similar to the embedding of the attack target. For different
α values, we train 10 trojaned encoders and show their av-
erage metrics in Table 8. The encoders are pre-trained on
CIFAR10 with ResNet18 architecture and the attack target
is a “truck” image from the attack dataset STL-10.

According to Table 8, DECREE stays effective when
α = 0.5, as encoders with PL1-Norm < 0.1 are detected
as trojaned. When α further increases, the adaptive attack
evades our detection. However, the ASR drops a lot at the
same time, from over 90% to below 70%, even around 30%.
Therefore, it is quite difficult for the attackers to evade our
detection with a high ASR.

G. Ablation Study
This section studies the effectiveness of DECREE against

different trigger patterns and sizes. We also studies the
impact of hyper-parameters. The results show that DECREE
has a robust design.

G.1. Different Trigger Patterns and Sizes

Trigger Configurations. We test the effectiveness of DE-
CREE on triggers with different configurations. The exper-
imental results are shown in Table 9. Encoders with PL1-
Norm < 0.1 are detected as trojaned. The default trigger
pattern is a 10×10 white square located at lower-right corner.

We can see that DECREE effectively inverts relatively
small triggers for all encoders trojaned by triggers with dif-
ferent colors, positions, and textures. That means DECREE
can successfully detect trojaned encoders in different trig-
ger patterns. We also show the effectiveness of DECREE
against different trigger size in Table 10.

G.2. Hyper-parameters

Effect of shadow dataset size M . In our evaluation, we
use shadow dataset (containing 1000 images) to do trigger



Table 9. Detection Results on Different Trigger Patterns. We alter
the configurations of triggers and conduct Image-on-Image attacks
with them. The 1-2 columns are the configurations we change. The
3-4 column are the L1-Norm and PL1-Norm of inverted triggers
generated by DECREE. For each row, we evaluate on 5 encoders
and compute the average. All the encoders are pre-trained on
CIFAR10 and the attack target is an image of label one from SVHN.

Config. Value L1-Norm PL1-Norm

Color
Green 250.43 0.082
Purple 248.48 0.081
White 113.99 0.037

Position
Lower-Right 113.99 0.037
Center 135.84 0.044
Upper-Left 123.72 0.040

Texture
Random 50.09 0.016
TrojanNN [32] 58.30 0.019
White 113.99 0.037

Table 10. Detection Results on Different Trigger Sizes. The input
image size of encoders is 32×32.

Trigger Size (Ratio) L1-Norm PL1-Norm

5×5 (2.4%) 36.44 0.012
7×7 (4.8%) 44.38 0.014
10×10 (9.8%) 113.99 0.037
12×12 (14.0%) 135.19 0.044
14×14 (19.1%) 150.76 0.049

inversion. We further evaluate on smaller shadow dataset to
show that DECREE is not sensitive to the shadow dataset
size M , as shown in the Table 11. Note that encoders with
PL1-Norm < 0.1 are detected as trojaned.

Table 11. Impact of Shadow Dataset Size M . Encoders are trained
on CIFAR10 and shadow dataset are randomly sampled from CI-
FAR10. We keep batch size N to be 128 during self-supervised
trigger inversion.

M 50 100 1000

L1-Norm 105.2 106.59 113.99
PL1-Norm 0.034 0.035 0.037

Effectiveness of threshold τ . We assign a pre-defined value
to τ = 0.1. We further clarify that τ = 0.1 is sufficient to do
effective detection.

As shown in the Table 10, we evaluate on 5 different
sizes of triggers, the ratio of which ranging from 2.5% to
20%. All of these triggers have a PL1-Norm < 0.1 because
the encoder just learns part of the trigger feature during
the trojaning procedure. Additionally, any trigger with a
larger ratio than 20% (occupying almost a quarter of the
whole image) is not a reasonable trigger since this violate
the principle of stealthiness for attackers. Therefore, τ = 0.1
is a reasonable upper-bound for trigger size ratios and thus

an effective threshold for DECREE.

H. Advanced Attacks
Existing backdoor attacks on self-supervised learning are

only effectively conducted when using patch-based sample-
agnostic triggers [20] [3].

To provide better understanding of backdoor attack
against self-supervised learning, we adapt 2 existing
“advanced attacks” (image-size and sample-specific at-
tacks) from supervised learning into our settings, namely
WaNet [38] and Invisible [28]. We follow the attack
procedure of BadEncoder [20], the Image-on-Image attack
we have adopted in our paper, and only change the trigger
pattern from patch-based triggers to image-size triggers
generated by WaNet and Invisible. Then we evaluate ASR
on the downstream classifier trained from the trojaned
encoder. The results is shown in Table 12.

Table 12. Advanced Attacks. ASR is evaluated on the downstream
classifiers trained on STL-10. The encoders are pre-trained on
CIFAR10 with ResNet18 architecture and the attack target is a
“truck” image from the attack dataset STL-10.

WaNet Invisible BadEncoder

ASR 10.23 10.02 99.73

From the experimental result, we can observe that image-
size and sample-specific backdoor attacks can hardly be
successful on self-supervised learning pre-trained encoders.
These attacks can be successful and stealthy in supervised
learning because there exist a concrete target label that
can enable a strong hint during attacking. However, self-
supervised learning only consider positive or negative pairs.
Without distinct and obvious features (like patch-based trig-
gers), such sample-specific triggers can hardly establish a
strong correlation between victim images and target images.

I. More SSL Attacks
We study on 3 emerging SSL attacks, namely SSLBack-

door [43], CorruptEncoder [57] and CTRL [26].
Our method successfully detected CorruptEncoder with

PL1-Norm of approximately 0.08 but failed to identify
SSLBackdoor and CTRL, both of which had PL1-Norm
around 0.23. The reason for our failure to detect SSLBack-
door was its low ASR (<10%), which falls outside of our
expected ASR range (>99%), as stated in our threat model.
Although SSLBackdoor had good false positive scores, its
stealthy nature made it difficult to detect. Our method also
failed to detect CTRL since it used a pervasive trigger that
was outside of our threat model (patch-like triggers).
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