
Dynamic Generative Targeted Attacks with Pattern Injection

Weiwei Feng1,⇤, Nanqing Xu1,⇤ , Tianzhu Zhang1,2,†, Yongdong Zhang1

1 University of Science and Technology of China, 2 Deep Space Exploration Lab
fengww@mail.ustc.edu.cn, xnq@mail.ustc.edu.cn, {tzzhang, zhyd73}@ustc.edu.cn

To further demonstrate the effectiveness of our dynamic
generative attack method, we present detailed mathematical
proofs and extra experiments in this Supplementary Ma-
terial. Section 1 mainly offers detailed proofs of Section
3.4 Theoretical Analyses in our paper. Detailed results and
analysis of extra experiments are available in Section 2, and
Section 3 provides visualization of the generated adversar-
ial examples and adversarial perturbations.

1. Theoretical Analyses
1.1. Preliminaries

Firstly, we consider a model of Gaussian Binary Classifi-
cation, where the model’s goal is to classify samples drawn
from C1 ⇠ N(µ,⌃) and C2 ⇠ N(�µ,⌃) according to a
maximum likelihood rule. Therefore, for an input x 2 Rk,
we have posterior probabilities P (C1|x) and P (C2|x) via
Bayes rule, which can be indicated as follows:

P (C1|x) = P (C1)P (x|C1)
P (x)

P (C2|x) = P (C2)P (x|C2)
P (x)

(1)

where the likelihood probabilities can be formulated as:

P (x|C1) =
exp

�
� 1

2 (x� µ)>⌃�1(x� µ)
�

p
(2⇡)k|⌃|

,

P (x|C2) =
exp

�
� 1

2 (x+ µ)>⌃�1(x+ µ)
�

p
(2⇡)k|⌃|

.

P (C1|x) and P (C2|x) are the probabilities of the sample
x as C1 and C2, respectively. Thus, we can know that if
P (C1|x) > P (C2|x), then the sample x is classified as
C1, and vice versa x is classified as C2. Figure 1 illustrates
the classification rule. Supposing that P (C1) = P (C2),
we classify x as C1, if the posterior probabilities hold the
following inequality:

P (C1|x)
P (C2|x)

=
P (x|C1)

P (x|C2)
>1. (2)

⇤ Equal Contribution
† Corresponding Author

!(#!|%)!(#"|%)

Classify as #!Classify as #"
Figure 1. The illustration of the learned classification rule.

Further, we just need to solve the following problem:
�
� 1

2 (x� µ)>⌃�1(x� µ)
�
�
�
� 1

2 (x+ µ)>⌃�1(x+ µ)
�
>0,

(x>⌃�1µ+ µ>⌃�1x>0

(x>⌃�1µ>0.
(3)

Therefore, we know that the learned classification rule is:

{x>⌃�1µ>0}, (4)

where is the indicate function.

1.2. Proofs
This section provides comprehensive proofs of Section

3.4 Theoretical Analyses in our paper.
Setup. We consider a simple problem of maximum like-

lihood classification, similar to that of [4], between two
Gaussian distributions.

Xs ⇠ N (µs,⌃s) , Xt ⇠ N (µt,⌃t) , (5)

where ⌃s,⌃t = diag
�
�2
s1 , · · ·�

2
sn

, diag

�
�2
t1 , · · ·�

2
tn

,

respectively. To simplify the following derivation, we intro-
duce a mapping and a translation operation to transform the
model into a standard Gaussian binary classification model
that is explained in Section 1.1, which can be denoted as:

Fs = AXs � Aµs+µt

2 ⇠ N (�µ,⌃) ,
Ft = EXt � Aµs+µt

2 ⇠ N (µ,⌃) ,
(6)

where the mapping matrix A = diag
n

�t1
�s1

,
�t2
�s2

· · · , �tn
�sn

o
,

E is the identity matrix and µ = �Aµs+µt

2 ,⌃ = ⌃t. To
perform targeted attacks against this model with a given
sample xs 2 Xs and the target label t, where Axs �
Aµs+µt

2 = fs 2 Fs and fs + �? = A(xs + �)� Aµs+µt

2 ,
according to Equation (4), we aim to solve the following
optimization problem:

� = A�1�?, �? = argmax
k�0k226"2

(fs + �0)> ⌃�1µ. (7)

Taking advantage of the method of Lagrange multipliers,
we can get the following problem:

⇢
r�0

�
�0>⌃�1µ

�
= �r�0

�
k�0k22 � "2

�

k�0k22 = "2
(8)

Then, we can easily get the optimal solution as follows:

�? = 1
�⌃

�1µ,

� = ⌃�1

2�

⇥
A�1

�
A (xs � µs) + µt

�
� xs

⇤
.

(9)

Going a step further, we rewrite the solution of � into a more
concise formula as:

� = C1

⇥

0

BBB@

�t1
�s1

. . .
�tn
�sn

1

CCCA
(xs � µs) + µt

⇤
� C2xs, (10)

where C1 = ⌃�1A�1

2� and C2 = ⌃�1

2� . In fact, note that
the item of represents the target pattern or style in-
jection, which is consistent with the previous works [3, 5].
Therefore, the formulation of Equation (10) shows a close
underlying correlation between the optimal targeted adver-
sarial perturbation and the embedding of target pattern or
style, which also theoretically guarantees the effectiveness
of our proposed generative model for targeted attacks.

2. Extra Experiments
2.1. Attack Google Cloud Vision API

To further demonstrate the effectiveness of our proposed
method, we also evaluate our adversarial examples against
real-world systems, Google Cloud Vision API. Note that the
API outputs a list of semantic labels along with confidence
scores, which are presented in Figure 2. Because all pre-
dicted labels are with relatively high confidence (� 50%),
successful attacks mean that as long as the target class label
appears in the top-10 prediction list. Besides, since the se-
mantic label set predicted by the API does not exactly cor-
respond to the 1000 ImageNet classes, we regard seman-
tically similar classes as the same class. For example, in

owl

bird

beak

terrestrial animal

71.7%

69.5%

68.4%

67.4%

leaf

parachute

art

pattern

89.3%

72.7%

72.1%

70.4%

(a) Target class “Grey Owl”

(b) Target class “Parachute ”

Figure 2. Successful targeted adversarial images on Google Cloud
Vision generated by the our method with various target classes.

Table 1. Targeted transfer success rates of different methods
against Google Cloud Vision with different substitute models.

Substitute model ! Inc-v3 Res-152 Vgg-16
DIM [8] 8.3% 9.2% 8.6%
TIM [2] 8.6% 9.5% 8.6%
SIM [6] 8.6% 9.1% 8.6%
MIM [1] 7.8% 7.7% 8.1%

Ours 19.6% 37.5% 25.9%

Figure 2(a), we think that the predicted labels “owl”, “bird”
and “beak” are semantically similar to the target class “Grey
Owl”, which indicates that our method generates successful
targeted adversarial examples. Table 1 reports the attack
success rate against Google Cloud Vision API with various
white-box models. In particular, our method achieves the
best transferability in all cases.

2.2. Evaluation on ImageNet Validation Dataset
For a consistent and fair comparison, we also follow [7]

to evaluate our method on ImageNet validation dataset. Fig-
ure 3 presents Top-1 target attack success rates (%) aver-
aged across 10 various target classes on 49.95K ImageNet
validation images (except 50 images from the target class).
Obviously, our method can show better transferability than
TTP [7], where our method outperforms TTP [7] by 2.02%
on average.

3. Visualization
Adversarial examples and corresponding perturbations

are shown in Figure 4, Figure 5, Figure 6, Figure 7, Fig-
ure 8, Figure 9, Figure 10, Figure 11, Figure 12 and Fig-

A
tta

ck
 S

uc
ce

ss
 R

at
e

(in
 %

)

50

60

70

80

90

100

VGG-16 ResNet-50 Densenet-121

85.25
89.68

67.42

85.0187.08

64.10

TTP Ours

Figure 3. Target attack success rates (%) averaged across 10 tar-
gets with 49.95K ImageNet validation images. Note that the sub-
stitute model is ResNet-152, and target models includes VGG-16,
ResNet-50 and DenseNet-121.

ure 13. The examples are randomly selected from the
dataset. Evidently, our method not only demonstrates an
underlying dependency between the input instance and the
corresponding adversarial perturbation, but also can gener-
ate adversarial perturbations with strong targeted semantic
patterns.

References
[1] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun

Zhu, Xiaolin Hu, and Jianguo Li. Boosting adversarial at-
tacks with momentum. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
9185–9193, 2018. 2

[2] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading
defenses to transferable adversarial examples by translation-
invariant attacks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4312–
4321, 2019. 2

[3] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 1501–1510, 2017. 2

[4] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan En-
gstrom, Brandon Tran, and Aleksander Madry. Adversarial
examples are not bugs, they are features. In H. Wallach, H.
Larochelle, A. Beygelzimer, F. dAlché Buc, E. Fox, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. 1

[5] Tero Karras, Samuli Laine, and Timo Aila. A style-based gen-
erator architecture for generative adversarial networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4401–4410, 2019. 2

[6] Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and
John E Hopcroft. Nesterov accelerated gradient and scale in-
variance for adversarial attacks. In International Conference
on Learning Representations, 2019. 2

[7] Muzammal Naseer, Salman Khan, Munawar Hayat, Fa-
had Shahbaz Khan, and Fatih Porikli. On generating transfer-
able targeted perturbations. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 7708–
7717, 2021. 2

[8] Cihang Xie, Zhishuai Zhang, Yuyin Zhou, Song Bai, Jianyu
Wang, Zhou Ren, and Alan L Yuille. Improving transferability
of adversarial examples with input diversity. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2730–2739, 2019. 2

Parachute

Snowmobile

Figure 4. Targeted adversarial examples and perturbations generated by our method trained against Res-152. Note that different target
classes lead to different patterns of adversarial perturbations. And there is an underlying dependency between the input instance and the
corresponding adversarial perturbation as well.

Parachute

Snowmobile
Figure 5. Targeted adversarial examples and perturbations generated by our method trained against Res-152. Note that different target
classes lead to different patterns of adversarial perturbation. And there is an underlying dependency between the input instance and the
corresponding adversarial perturbation as well.

Clean examples

 Adversarial perturbations

Figure 6. Targeted adversarial perturbations generated by our method trained against Res-152 with target class “Snowmobile”. Note that
there is an underlying dependency between the input instance and the corresponding adversarial perturbation. And the perturbations are
produced with strong targeted semantic patterns.

Clean examples

 Adversarial perturbations

Figure 7. Targeted adversarial perturbations generated by our method trained against Res-152 with target class “Street Sign”. Note that
there is an underlying dependency between the input instance and the corresponding adversarial perturbation. And the perturbations are
produced with strong targeted semantic patterns.

Clean examples

 Adversarial perturbations

Figure 8. Targeted adversarial perturbations generated by our method trained against Res-152 with target class “Model T”. Note that
there is an underlying dependency between the input instance and the corresponding adversarial perturbation. And the perturbations are
produced with strong targeted semantic patterns.

Clean examples

 Adversarial perturbations

Figure 9. Targeted adversarial perturbations generated by our method trained against Res-152 with target class “French Bulldog”. Note
that there is an underlying dependency between the input instance and the corresponding adversarial perturbation. And the perturbations
are produced with strong targeted semantic patterns.

Clean examples

 Adversarial perturbations

Figure 10. Targeted adversarial perturbations generated by our method trained against Res-152 with target class “Grey Owl”. Note that
there is an underlying dependency between the input instance and the corresponding adversarial perturbation. And the perturbations are
produced with strong targeted semantic patterns.

Clean examples

 Adversarial perturbations

Figure 11. Targeted adversarial perturbations generated by our method trained against Res-152 with target class “Goose”. Note that there is
an underlying dependency between the input instance and the corresponding adversarial perturbation. And the perturbations are produced
with strong targeted semantic patterns.

Clean examples

 Adversarial perturbations

Figure 12. Targeted adversarial perturbations generated by our method trained against Res-152 with target class “Hippopotamus”. Note
that there is an underlying dependency between the input instance and the corresponding adversarial perturbation. And the perturbations
are produced with strong targeted semantic patterns.

Clean examples

 Adversarial perturbations

Figure 13. Targeted adversarial perturbations generated by our method trained against Res-152 with target class “Cannon”. Note that
there is an underlying dependency between the input instance and the corresponding adversarial perturbation. And the perturbations are
produced with strong targeted semantic patterns.

