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1. Masking strategy

The proposed method makes the masks evlove with the
training process and combines the effects of grid-wise and
part-wise masking by weighted adding the corresponding
probability values. We elaborate method in Sec. 3. Fur-
ther, this section provides a pseudocode implementation in
Algorithm 1.

Algorithm 1 PyTorch pseudocode for masking strategy.

# x: input patches
# r: masking ratio
# S: parts partition for patches
# α: a hyper-parameter to balance between random mask
# and semantic-guided mask

def Mask(x, r, S, α):
B, H, W, C = x.shape
N = H * W

# assign part-wise probability
part_ini = Random(N)
p_parts = torch.gather(part_noise_ini, index=S)

# assign grid-wise probability
grid_ini = Random(2, 2)
p_grid = [grid_ini[(i//W)%2, i%2] for i in range(N)]

# aggregate probabilities with a dynamic weight
p = (1 - α) * p_grid + α * p_parts

# decide mask or not according to the probability
rank = torch.argsort(p)
patch_location = torch.argsort(rank)
ids_mask = rank[:, :N * r]
x_masked = torch.gather(x, index=ids_mask)

return x_masked, patch_location

The random sequences part ini and grid ini corre-
spond to the δ in the article, i.e., a set of random values
to assign the probability P . For grid-wise masks, we assign
identical probability values to the patches with the same rel-
ative position in the grid to ensure that these are preserved
or masked simultaneously. For part-wise masks, we set the
exact probability values for the patches with the same value
in S (i.e., patches belonging to the same part). After that,
we add the pparts and pgrid together and mask out the top
⌊N × r⌋ patches with the highest probability values.
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Figure 1. ImageNet-1K [1] top-1 classification performance.
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Figure 2. ADE20K [3] semantic segmentation mIoU curves.

2. Downstream performance
In this section we show the performance curves of the

proposed method and three basic mask methods on down-
stream tasks, i.e. classification, segmentation and detection
in 1, 2 and 3 respectively. It can be seen that the evolved
method outperforms the static mask method in different pre-
training epochs. Our methods can effectively converge with
the limited training epochs, while with longer pre-training
epochs, the method can further improve performance on
various downstream tasks.

3. Compared with straightforward evolved
baseline.

The partition is done with graph-cut in this paper. To
validate the effectiveness of the proposed partition strategy,
we replace our graph partition with random block mask-
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Figure 3. MSCOCO [2] detection AP-box performance.

ing as a baseline, i.e., the mask evolves from grid mask-
ing to block masking. It achieves 79.18% (v.s. 79.89% of
ours) ImageNet classification top-1 accuracy and 38.30%
(v.s. 40.42% of ours) ADE20K [3] mIoU with 200 epochs
pretraining.
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