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A. Implementation Details

A.1. Camera Setup

To build a real-world dataset, we mount the two smart-

phones on the tripod as shown in Figure A1 and take each

set of images using Bluetooth remote controller to con-

trol the shutter speed. The camera modules are physically

placed as close as possible to decrease the baseline in a

stereo setting. The aperture and focal length are fixed and

unadjustable for both cameras. The resolution of ZTE Axon

20 is 3264×2448, and that of iPhone 13 Pro is 4032×3024.

For the degraded image, we set the under-display camera

configurations by its built-in automatic exposure system and

take three shots bracketed at [1, 1/4, 1/16], which are then

composed into one HDR image. For the reference image,

we set a low ISO value ranging from 100 to 200 to avoid

heavy noise, and adjust the shutter speed to capture sharp

and clean images of proper exposure. We avoid capturing

objects that are too close to filter out image pairs with large

parallax or occlusion. For each scene of the pair, we register

the image captured by iPhone as a reference image to the

UDC image using a homography transform calculated by

RANSAC [16]. Then we crop out the invalid areas due to

the homography transformation and parallax between two

cameras, and downsample the pairs to 3200 × 2400. The

dataset is exemplified by triplet sets in Figure A2. The ref-

erence images after alignment still show mild displacement

compared to the corresponding UDC images.

A.2. Occlusion Mask

Occluded pixels, by definition, are invisible in the ref-

erence image, which should be discounted for spatial su-

pervision (e.g., L1 and LV GG), since inaccurate deforma-

tions over these regions could deteriorate image restoration

network training. We implement the detection based on

forward-backward consistency assumption [13], that is, for

Figure A1. A close-up picture of our custom-built camera setup

consisting of two smartphones mounted on a tripod.

non-occluded pixels, traversing the forward flow and then

backward should arrive at the same pixel.

In particular, the forward optical flow from IR to ÎD is

given by Ψf = ψflow(ÎD, IR), and the backward flow can

similarly be estimated by Ψb = ψflow(IR, ÎD). Suppose

forward flow vector is w = Ψf (p) at point p = (x, y), the

forward-backward flow vector is denoted as ŵ = Ψb(p +
Ψf (p)). The non-occlusion mask M , with granted toler-

ance for small estimation errors, can then be formulated by

M(p) =

{

1, if ∥w + ŵ∥2 < α(∥w∥2 + ∥ŵ∥2) + β

0, otherwise
,

(1)

where tolerance parameters α and β are set to 0.1 and 1 in

this paper. Figure A3 illustrates several examples of masked

invalid regions (highlighted in red).

A.3. Conditional PatchGAN

To further improve the visual quality, we also add adver-

sarial loss based on conditional PatchGAN [5]:

LGAN = −E[logD(ID, IO)], (2)

1



(a) UDC (b) Before alignment (c) After alignment

Figure A2. The image examples in our dataset. Images (a) and (b) are captured by UDC and a normal camera, and they exhibit obvious

misalignment. We roughly align (b) to (a) with homography transformation to obtain (c). Even after alignment, there still exists mild

misalignment between (a) and (c), which will be mitigated by our AlignFormer.

where D is the discriminator conditioned on both input and

output of PPM-UNet, and it is optimized by

LD = −E[logD(ID, IP )]− E[log(1−D(ID, IO))]. (3)

PatchGAN uses a discriminator that distinguishes image

patches of size 70 × 70, which proves to produce sharper

details than the vanilla “global” discriminator. Inspired by

[8,9], we adopt conditional PatchGAN as a discriminator to

capture high frequencies in local features. Particularly, we

use the discriminator architecture that only penalizes struc-

ture at the scale of patches (PatchGAN). This discriminator

tries to classify if each N × N patch is real or fake. We

run the discriminator across the image, and then average all

responses to obtain the patch-based output. N is set to 16
in our experiments. We also empirically found conditional

GAN, where the discriminator is conditioned on UDC im-

ages, facilitates more realistic results.

A.4. Network Structure

The Domain Alignment Module (DAM) contains two

sub-nets: a guidance net and a matching net. The detailed

architecture of DAM is listed in Table A1. In the matching

net, StyleConv is the conv layer modulated by style condi-

tions as proposed in StyleGANv2 [7]. The guidance net

is designed to generate a conditional vector that extracts

holistic domain information from the reference image. Af-

ter that, the matching net transfers the domain information,

e.g., color, illuminance, and contrast, to the degraded UDC

image and produces a coarse restored image that is similar

to the reference image.

The structure of the image restoration network is shown

in Table A3. We adopt a modified U-Net as in [20] and add

a Pyramid Pooling Module (PPM) [19] into the network to

capture global information (See Figure A4). We adopt the

original design of PPM containing 4 mean pooling branches



UDC Ref AlignFormer (Masked)

Figure A3. Invalid mask visualization. The invalid (occlusion)

mask (highlighted in red) is estimated by forward-backward as-

sumption. Note that it also detects pixels at borders, and moving

objects in non-still images.
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Figure A4. Illustration of Pyramid Pooling Module (PPM).

with bin sizes of 1, 2, 3, 6. As demonstrated in the main pa-

per, the PPM layers propagate global prior into the network

and stabilize training and suppress artifacts in UDC image

restoration.

B. Objective Evaluation

In addition to quantitatively measuring the character-

istics of the captured natural scenes (i.e., on the test

dataset), we also conduct objective quality evaluation via

engineering-based quality metrics. The Modulation Trans-

Table A1. Detailed structure of DAM. k and s indicate the kernel

size and stride of the convolutional layer. ↑ and ↓ represent 2×
upsampling and 2× downsampling, respectively.

Guidance Net

Layer Configuration Output size

Conv, LeakyReLU k = 3, s = 1 256× 256× 64
Conv, LeakyReLU k = 3, s = 2 128× 128× 64
Conv, LeakyReLU k = 3, s = 1 128× 128× 64
Conv, LeakyReLU k = 3, s = 1 64× 64× 64
Conv k = 3, s = 1 64× 64× 64
Global Average Pooling - 1× 1× 64

Matching Net

Layer Configuration Output size

StyleConv, LeakyReLU k = 3, s = 1 256× 256× 64
StyleConv, LeakyReLU, ↓ k = 3, s = 1 128× 128× 64
StyleConv, LeakyReLU k = 3, s = 1 128× 128× 64
StyleConv, LeakyReLU, ↓ k = 3, s = 1 64× 64× 64
StyleConv, LeakyReLU k = 3, s = 1 64× 64× 64
StyleConv, LeakyReLU k = 3, s = 1 64× 64× 64
StyleConv, LeakyReLU k = 3, s = 1 64× 64× 64
StyleConv, LeakyReLU, ↑ k = 3, s = 1 128× 128× 64
StyleConv, LeakyReLU k = 3, s = 1 128× 128× 64
StyleConv, LeakyReLU, ↑ k = 3, s = 1 256× 256× 64
StyleConv, LeakyReLU k = 3, s = 1 256× 256× 64
StyleConv, LeakyReLU k = 3, s = 1 256× 256× 3

Table A2. The MTF curve results. Reported are the weighted

mean summary of several detected slant edges.

Metric UDC Ref Restored

MTF50 (LW/PH) ↑ 661 1516 1039

MTF20 (LW/PH) ↑ 1307 2023 1769

Figure A5. Lab-based image of ISO 12233 eSFR test chart.

fer Function (MTF) and the related Spatial Frequency Re-

sponse (SFR) are commonly used to characterize an imag-

ing system’s reproduction of modulation, as a function of

spatial frequency [11,15,17]. MTF can inform the system’s

resolution and sharpness, which mainly contribute to the

overall image quality. MTF can be derived from the slanted-



Table A3. Detailed structure of PPM-UNet.

Module Kernel size # of channels Dilation Stride Activation Output size

Conv1 3× 3 32 1 1 LeakyReLU (0.2) 256× 256× 32
Conv2 3× 3 64 1 2 LeakyReLU (0.2) 128× 128× 64
Conv3 3× 3 64 1 1 LeakyReLU (0.2) 128× 128× 64
PPM1 - - - - - 128× 128× 64
Conv4 3× 3 128 1 2 LeakyReLU (0.2) 64× 64× 128
Conv5 3× 3 128 1 1 LeakyReLU (0.2) 64× 64× 128
PPM2 - - - - - 64× 64× 128
Conv6 3× 3 128 1 2 LeakyReLU (0.2) 32× 32× 128
Conv7 3× 3 128 1 1 LeakyReLU (0.2) 32× 32× 128
PPM3 - 128 - - - 32× 32× 128
Conv8 3× 3 128 1 1 LeakyReLU (0.2) 32× 32× 128
Conv9 3× 3 128 1 1 LeakyReLU (0.2) 32× 32× 128

Add (w/ PPM3) - 128 - - - 32× 32× 128
Upsample ↑ - 128 2 - - 64× 64× 128

Conv10 3× 3 128 1 1 LeakyReLU (0.2) 64× 64× 128
Conv11 3× 3 128 1 1 LeakyReLU (0.2) 64× 64× 128

Add (w/ PPM2) - 128 - - - 64× 64× 128
Upsample ↑ - 128 2 - - 128× 128× 128

Conv12 3× 3 64 1 1 LeakyReLU (0.2) 128× 128× 64
Conv13 3× 3 64 1 1 LeakyReLU (0.2) 128× 128× 64

Add (w/ PPM1) - 64 - - - 128× 128× 64
Upsample ↑ - 64 2 - - 256× 256× 64

Conv14 3× 3 32 1 1 LeakyReLU (0.2) 256× 256× 32
Conv15 3× 3 32 1 1 LeakyReLU (0.2) 256× 256× 32

Conv16 3× 3 3 1 1 - 256× 256× 3

edge technique [2] with carefully designed test charts under

strict laboratory conditions. To calculate the MTF curve,

we use the Enhanced version of ISO 12233 imatest eSFR

test chart [4] (See Figure A5). The enhanced eSFR ISO test

chart adds 6 squares on sides, 16 color patches, and several

wedge patterns.

A key data point from the MTF curve is MTF50, where

MTF is 50% of its low (0) frequency value. Similarly,

MTF20 is the spatial frequency where MTF is 20% of the

zero frequency. As recommended by Imatest [1], we use

these two metrics for analysis throughout this work. We

use the data dumps with least post-processing, such that the

evaluation can operate in a more linear region, and hence re-

sults are less affected by overexposure, underexposure, and

excessive sharpening. Table A2 summarizes the results. As

can be observed, the MTF values increase when the UDC

images are restored by our PPM-UNet, which demonstrates

that the image restoration network also increases the con-

trast and sharpness of images.

In addition, we show the complete MTF curves, and the

edge profile the MTF is derived from, of the original UDC,

reference, and restored UDC in Figure A6. One can observe

the contrast improvement in the low- to mid-frequency band

of the restored image compared to the original UDC image,

as the modulation transfer is noticeably higher in the 0-0.4

cycles/pixel frequency region. The overall MTF shape of

the restored image is also more similar to the reference im-

age compared to the original UDC, suggesting an overall

more natural contrast and sharpness after restoration.

C. Analysis of Displacement Metrics

In absence of ground-truth correspondence, it is non-

trivial to quantify how well the pseudo GT (output of Align-

Former) is aligned to the UDC image. Thus, we indirectly

measure the displacement error with LoFTR [12] that serves

as a keypoint matcher. Given a set of matched keypoints

from two images, PCK measures the Percentage of Correct

Keypoints transferred to another image, which lie within a
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Figure A6. MTF curves and edge profiles, obtained with Imatest on ISO12233 test chart.

UDC / Ref  = 0 (PCK=69.10%)  = 8 (PCK=44.70%)  = 16 (PCK=25.81%)  = 32 (PCK=10.79%)

Figure A7. Illustration of PCK and flows with perturbation. Top row are the image and wrapped images, while bottom row show

the flows with perturbation. The wrapped images are severely distorted when injecting large perturbation on flow. Reported results are

evaluated on PCK with α = 0.01 (∼ 1 pixel error tolerance).

certain error threshold.

In particular, suppose xA and xB are the same matched

keypoint located at pA in one image and pB in another im-

age, d = ∥pA − pB∥2 measures the displacement of coor-

dinates. Ideally, the offset should be all zeros when two im-

ages are perfectly aligned. As global keypoint search may

lead to long-range matching, causing outliers with large dis-

placement, we do not average out all displacement errors d
over detected keypoints. Instead, we calculate the percent-

age of correct matched pairs, denoted as PCK in the main

paper. The keypoint pair is deemed correctly aligned when

d is smaller than the preset threshold. Following common

practice in image matching [6,10], we set α error threshold,

given by d < α × max(H,W ), where H and W are the

height and width of the image.

To justify the metrics, we conduct controlled experi-

ments for further analysis. Specifically, we estimate opti-

cal flow from the reference image to the UDC image us-
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Figure A8. PCK on different wrapped images where flows

are added with various perturbations. The perturbation is con-

trolled by Gaussian noise with various std σ ranging from 0 (Orig-

inal flow) to 64. We report the PCK results averaged over 330

images of shape 1024 × 1024. The PCK curves exhibit a consis-

tent tendency with perturbation, indicating the displacement met-

ric PCK can accurately reflect misalignment in our task.

ing RAFT [14], inject perturbation into the flow, and then

warp the reference image with the deformed flow. Fol-

lowing [18], the deformation is implemented by sampling

amounts of independent Gaussian noise with µ = 0 and

controllable standard deviation (std) σ. Then we compute

PCK between the warped reference image and UDC image.

The reported PCK results are averaged over 330 images of

size 1024 × 1024. Generally, a larger perturbation to the

flow would induce greater displacement on the warped im-

age. Figure A8 reflects the behaviors of PCK at various

α thresholds under different perturbations. All curves con-

sistently drop when the perturbations (controlled by σ) be-

come greater. Figure A7 visualizes an example of warping

flow with perturbation. We also observe a similar tendency

of PCK and perturbation. This implies the PCK metric is

suitable in our cases for quantifying misalignment.

D. Additional Ablation Studies

Effectiveness of Alignment Method. Figure 7 in the

main body presents the results aligned by the image regis-

tration algorithm proposed by Cai et al. [3]. Since originally

designed for image pairs taken at different focal lengths, it is

hard to register stereo pairs where optical axis are not coin-

cident. This problem is further compounded by the unique

degradation of UDC images. As shown in Figure A9, Cai et

al. cannot achieve accurate registration, while our Align-

Former perfectly aligns the reference images.

E. Additional Visual Results

We provide more visual comparisons on real data in Fig-

ure A10 and Figure A11. In addition, Figure A12 and A13

present more visual comparisons with representative works.

UDC – Cai et al. UDC – AlignFormer

Figure A9. Stitched pairs of local patches from aligned images.

Bottom left are UDC images, and top right are corresponding re-

sults generated by Cai et al. [3] or AlignFormer. Results demon-

strate Cai et al. [3] cannot achieve accurate registration, while our

AlignFormer perferctly aligns the reference images.

Our method outperforms previous approaches in both re-

moving artifacts and suppressing flare. Other methods fail

to remove complicated artifacts or introduce over-correct ar-

tifacts), or produce blurry results. The visual results suggest

that our proposed data generation framework could facili-

tate diffraction removal and restore texture details well.

F. Limitations

Although the PPM-UNet, as a baseline model, already

achieves promising performance for restoring real UDC im-

ages, more domain-specific designs such as aiming at the

limited dynamic range of UDC images and remedying the

loss of details around the over-saturation regions are re-

quired for better restoration. While achieving rather sat-

isfactory results on small areas of light sources, our work

still struggles when highlight regions are large and intensi-

ties are extremely strong, leading to blurry results. This re-

quires further exploration on extreme cases with large and

strong highlights.

G. Broader Impacts

Our work can be used to generate other types of

aligned pseudo-supervision from non-aligned data e.g. low-

light/normal-light data and low-resolution/high-resolution

data. Our data will enable neural networks for restoring

UDC images. Our method will provide a new solution to



such issues for both academia and industry. While col-

lecting our dataset, we try to avoid people to ensure pri-

vacy. Therefore, our dataset does not involve ethical issues.

Moreover, as a typical image restoration task, our work will

not bring negative impacts to the society.
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Figure A10. Visual comparison between different datasets on the baseline network.
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Figure A11. Visual comparison between different datasets on the baseline network.
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Figure A12. Qualitative comparisons on representative real-world samples.
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Figure A13. Qualitative comparisons on representative real-world samples.
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