
Supplementary Material: Nonlinear Vector Transform Coding

Runsen Feng Zongyu Guo Weiping Li Zhibo Chen
University of Science and Technology of China

{fengruns, guozy}@mail.ustc.edu.cn, {wpli, chenzhibo}@ustc.edu.cn

A. On Toy Sources
We investigate the advantages of ECVQ on 11 different

source distributions with varied dimensions. Among them,
we show the 8 two-dimentional distributions in Figure 2, in-
cluding Isotropic Gaussian, Banana, Boomerang, Laplace,
Gaussian Mixture, Sphere0, Shpere50 and Shpere99.

The details about the architecture of codecs are described
in Section A.1. The experimental results and analysis are
provided in Section A.2.

A.1. Architecture

We implement three different codecs for comparison:
VQ/ECVQ, SQ with nonlinear transform (NTC), and
VQ/ECVQ with nonlinear transform (NT-VQ/NT-ECVQ).

VQ/ECVQ. As mentioned in the main paper, the encoder
function of VQ with dimension k and size N is as follows:

i = argmin
i

d(x, ci), (1)

where d is a distortion metric and ci is a codeword of the
codebook c = {ci ∈ Rk|i = 0, 1, ..., N − 1}. The decoder
function is a lookup operation: x̂ = ci. The codeword
probability P (i) = pi is parameterized with the Softmax
function and unnormalized logits w = (w1, w2, ..., wN ):

pi =
e−wi∑N
j=1 e

−wj

. (2)

The rate loss is Ex[− log pi] and the distortion loss is
Ex[d(x, x̂)]. The encoder function of ECVQ is improved
as follows:

i = argmin
i

[− log pi + λd(x, ci)] , (3)

where λ controls the RD trade-off.

NTC. The architecture of NTC for toy sources is shown
in Figure 3. Input x is transformed into latents y = ga(x)
by a analysis transform ga, which is then quantized by a

uniform scalar quantizer (rounding to integers). The quan-
tized latent ŷ = ⌊y⌉ is then mapped back to the recon-
struction x̂ = gs(ŷ) by a synthesis transform gs. In train-
ing, the rounding operation approximated by adding uni-
form noise [2,3]. We use the factorized prior [3] for entropy
modeling. The overall loss is as follows:

L = Ex[− logP (ŷ)] + λExd(x, x̂). (4)

NT-VQ/NT-ECVQ. To verify the effectiveness of ECVQ
in latent space, we replace the uniform scalar quantization
of NTC with VQ/ECVQ, named NT-VQ/NT-ECVQ. For
NT-VQ, the encoding function is as follows:

i = argmin
i

d1(ga(x), ci), (5)

and the encoding function for NT-ECVQ is:

i = argmin
i

[− log pi + λd1(ga(x), ci)] . (6)

We have y = ga(x), ŷ = ci and x̂ = gs(ŷ). To jointly
optimize the transform and VQ codebook, we employ the
straight-through estimator (STE) used in previous works [1,
9]:

dŷ

dy
= 1, (7)

and propose a new rate-distortion loss for latent space VQ:

L = Ex[− log pi] + λExd(x, x̂) + βExd1(y, ci), (8)

where d is the source-space distortion metric, and d1 is
the latent-space VQ distortion metric. λ controls the rate-
distortion trade-off. β controls the trade-off between d and
d1. In practice, both d and d1 are measured by MSE, and β
is equal to λ.

A.2. Experiments

In Figure 4 we provide the RD curves. We show the
visualization of quantization results in Figure 5.

1



Space-filling advantage. As mentioned in the main pa-
per, the space-filling advantage increases with dimension
(see the RD results of 2-d, 4-d, 8-d and 16-d isotropic Gaus-
sian distributions in Figure 4).

Memory advantage. The benefits of memory advantage
are significant in the distributions of Boomerang, Gaussian
Mixture, Sphere0, Sphere50, and Sphere99. All these dis-
tributions have highly nonlinear correlations.

ECVQ vs. VQ. ECVQ is better than VQ on all the dis-
tributions. An observation is that the gap between VQ and
ECVQ is very small on the sphere-like uniform distributions
(Sphere0, Sphere50, Sphere99). It is probably because the
probabilities of quantization centers on uniform distribution
are similar to each other, which decreases the impact of rate
bias in ECVQ encoding. Another observation in Figure 5
is that the quantization cells/regions of VQ in high prob-
ability area are much smaller than that in low probability
area. In contrast, in ECVQ, the quantization regions in dif-
ferent density area have similar sizes. The reason is that the
quantization boundaries in ECVQ shift from high probabil-
ity region to low probability region, enlarging the size of
high-probability region.

ECVQ vs. NT-ECVQ. In Figure 5, a major difference
between the ECVQ and NT-ECVQ is that NT-ECVQ warps
the source space by nonlinear transform, making the quan-
tization boundaries into curves. Moreover, as shown in Fig-
ure 4, NT-ECVQ optimized with Equation 8 has a compa-
rable RD performance to ECVQ, demonstrating the effec-
tiveness of the proposed training loss.

NT-ECVQ vs. NT-VQ. We have verified the effective-
ness of entropy-constrained quantization in source space.
What about the effectiveness in latent space? Can nonlin-
ear transform learn to approximate the shift of quantization
boundaries in ECVQ? By comparing the performance of
NT-ECVQ and NT-VQ, we show that ECVQ is also impor-
tant in latent space. Despite nonlinear transform approxi-
mate ECVQ well on 1-d distributions [2], it frequently fails
on 2-d distributions at most of the rate points. As shown
in Figure 5, the shift of quantization boundaries is not ob-
served in the quantization results of NT-VQ.

B. On Neural Images

B.1. Baseline

BPG The RD results of BPG is obtained from Compres-
sAI [4] by running the following command:

python -m compressai.utils.bench bpg [dataset]

-q 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

VTM-18.2 The software VTM-18.2 is downloaded from
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware VTM.
We first convert the RGB images into YUV444:

ffmpeg -i [IMGfile] -pix fmt yuv444p [YUVfile]

We then encode the YUV file into bitstream:

EncoderAppStatic -i [YUVfile] -c [CFGfile] -q [QP]

-o [OUTfile] -b [BINfile] -wdt [W] -hgt [H] -fr 1 -f 1

--InputChromaFormat = 444 --InputBitDepth = 8

--ConformanceWindowMode = 1

And the decoding command is:

DecoderAppStatic -o [OUTfile] -b [BINfile] -d 8

Finally, we convert the reconstructed YUVfile into RGB
images for evaluation:

ffmpeg -s [W]x[H] -pix fmt yuv444p -i [OUTfile]

[IMGfile]

Learning-based methods The results of Cheng-
CVPR20 [5], Minnen-NIPS2018 [7] and Balle-ICLR18 [3]
are evaluated based on the reimplementation from Com-
pressAI [4]. The complexity results of Zou-CVPR22 [11]
and Zhu-CVPR22 [10] are evaluated based on their official
implementation. The other results are obtained from the
paper or the authors.

B.2. Architecture

Downscale & upscale layers. The detailed architecture
of Downscale and Upscale layers are shown in Figure 6.
We use Pixel Shuffle [8] instead of strided convolution for
upsampling. Downscale-B is enhanced with Resblocks for
learning nonlinear vector representation.

Conditional entropy model (CEM). The architecture of
CEM at layer l is shown in Figure 7. CEM consists of three
parts: 1) an entropy parameter module that generates the
prior parameters el, 2) a vector quantizer that maps el into a
finite set, and 3) conditional logit prior that outputs discrete
probability distribution given the prior parameters el or êl.
The use of VQ in CEM ensures that all possible probabil-
ity distributions in a layer can be indexed by a distribution
table. This distribution table is known to both encoder and
decoder after training. Instead of generating probability dis-
tributions dynamically, we simply lookup the distribution



table with the VQ index for a much faster entropy coding
process (about 6x faster). Currently, the VQ in CEM brings
about 0.15dB drop, which can be further optimized in the
future. In practice, we first train the model without the VQ
in CEM, and then finetune the full model.

Model configurations We provide the detailed model
configurations in Table 1. For layer l, Hl × Wl × Cl is
the feature size. bl is the block size used in the VT units
and product VQ. Nl and kl are the VQ codebook size and
VQ dimension, respectively. Tl is the iteration milestones
for progressive initialization. Besides, δT is set to 10k.

Layer Hl Wl Cl bl Nl kl Tl

1

H
16

W
16

192 4

512 16 0.0M

2
3
4
5
6
7

H
8

W
8

256 8 0.2M

8
9
10
11
12
13

H
4

W
4

128/256 4 0.4M14
15
16

Table 1. Detailed configurations of different quantization layers.

B.3. Experiments

In this section, we provide additional ablation studies,
model properties and visualization of reconstruction. For
ablation studies, we provide the BD-rate in Table 2 and the
RD curves in Figure 1. BD-rate is calculated using the soft-
ware from https://github.com/Anserw/Bjontegaard metric.
All models are optimized with 128 × 128 image patches.

The number of quantization layers. As mentioned in
the main paper, the number of quantization layers influence
the rate-distortion-complexity trade-off. The full model
consists of 16 quantization layers with (L1, L2, L3) =
(6, 6, 4). We change (L1, L2, L3) to (3, 3, 2), (0, 6, 4) and
(0, 0, 4) and train 3 model variants, which is named “A4:
L=3+3+2”, “A5: L=0+6+4” and “A6: L=0+0+4”, respec-
tively. It can be observed that 1) the models with fewer
quantization layers perform worse at high rate points, and

BD-rate Parameters (M)
Full model 0.0% 12.8
A4: L=3+3+2 7.7% 8.7
A5: L=0+6+4 6.8% 8.9
A6: L=0+0+4 27.1% 5.8
A7: w/o depth-wise 29.4% 9.5
A8: w/o CEM in EC 39.6% 12.8

Table 2. Ablation study on Kodak. BD-rate is computed over the
full models (smaller is better).

Figure 1. Ablation study on Kodak dataset.

2) the low-resolution quantization layers (numbered by L1

or L2) which capture global correlation have a significant
impact at all rate points.

Depth-wise Block FC vs. Block FC. We investigate the
impact of the proposed Depth-wise Block FC layer. We
build a variant named Block FC where all channels use the
same transformation matrix. Block FC is similar to Block-
DCT with a learnable transformation matrix. The perfor-
mance of Block FC (noted as “A7: w/o depth-wise”) is
much worse than the full model.

CEM in entropy coding. CEM plays an important role
in removing inter-vector redundancy across different quan-
tization layers. We investigate rate savings when disabling
CEM in entropy coding. Instead of retraining the whole
model, we simply replace the CEM in a trained model with
the unconditional entropy model (UEM) shown in Equa-
tion 2. Then UEM is optimized using the rate loss only
for entropy coding. The results (“A8: w/o CEM in EC”)
demonstrate the significant rate savings of CEM, which is
not considered in previous works [1, 10] with VQ.



Subjective comparison. In Figure 8 and Figure 9, we
provide the subjective comparison between our method and
VVC. Our reconstruction has a slightly better subjective
quality with a smaller bpp.

References
[1] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen,

Lukas Cavigelli, Radu Timofte, Luca Benini, and Luc V
Gool. Soft-to-hard vector quantization for end-to-end learn-
ing compressible representations. Advances in neural infor-
mation processing systems, 30, 2017. 1, 3

[2] Johannes Ballé, Philip A Chou, David Minnen, Saurabh
Singh, Nick Johnston, Eirikur Agustsson, Sung Jin Hwang,
and George Toderici. Nonlinear transform coding. IEEE
Journal of Selected Topics in Signal Processing, 15(2):339–
353, 2020. 1, 2

[3] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. arXiv preprint arXiv:1802.01436,
2018. 1, 2

[4] Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay
Pushparaja. Compressai: a pytorch library and evalua-
tion platform for end-to-end compression research. arXiv
preprint arXiv:2011.03029, 2020. 2

[5] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro
Katto. Learned image compression with discretized gaussian
mixture likelihoods and attention modules. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7939–7948, 2020. 2

[6] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). arXiv preprint arXiv:1606.08415, 2016. 5

[7] David Minnen, Johannes Ballé, and George D Toderici.
Joint autoregressive and hierarchical priors for learned im-
age compression. Advances in neural information processing
systems, 31, 2018. 2

[8] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1874–1883, 2016. 2, 8

[9] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 1

[10] Xiaosu Zhu, Jingkuan Song, Lianli Gao, Feng Zheng, and
Heng Tao Shen. Unified multivariate gaussian mixture
for efficient neural image compression. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17612–17621, 2022. 2, 3

[11] Renjie Zou, Chunfeng Song, and Zhaoxiang Zhang. The
devil is in the details: Window-based attention for image
compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 17492–
17501, 2022. 2



(a) Isotropic Gaussian (b) Banana (c) Boomerang (d) Laplace

(e) Gaussian Mixture (f) Shpere0 (g) Shpere50 (h) Shpere99

Figure 2. Visualization of 2-d sources. Yellow means high probability density and purple means low probability density.

Figure 3. Architecture of NTC on toy sources. “FC (E)” refers to a fully-connected layer with E output channels. F is equal to the data
dimension k. E = 128 for 2-d distributions, and E = 384 for 4-d, 8-d and 16-d distributions. “UQ” is the uniform scalar quantization.
“GELU” is the Gaussian Error Linear Units [6].



Figure 4. RD curves on toy sources.



Figure 5. Visualization of quantization results.



Figure 6. Architecture of Downscale and Upscale layers. “Conv (C, ks)” refers to a convolutional layer with C output channels and a
kernel size of ks. “Conv (*, 1)” refers to a 1× 1 convolutional layer with “*” output channels which adaptively changes for requirements.
Pixel Unshuffle is a space-to-depth layer (for downsampling) and Pixel Shuffle is a depth-to-space layer (for upsampling) [8]. (Right)
“Resblocks (C, ks)” refers to the Resblock layer consisting of multiple “Conv (C, ks)”. C is set to 192 for all rate points.

Figure 7. Architecture of Conditional Entropy Model (CEM).



(a) Ours. Bpp=0.2626, PSNR=35.23dB.

(b) VVC. Bpp=0.2761, PSNR=35.32dB.

Figure 8. Comparison between the proposed method and VVC on “Kodim07.png”.



(a) Ours. Bpp=0.6574, PSNR=31.45dB.

(b) VVC. Bpp=0.7051, PSNR=31.60dB.

Figure 9. Comparison between the proposed method and VVC on “Kodim05.png”.


