
Supplementary Material
RONO: Robust Discriminative Learning with Noisy Labels for 2D-3D Cross-Modal Retrieval

In this supplementary material, we provide complemen-
tary information on theory and experiments. Specifically,
we mainly supplement the proofs of mathematical proper-
ties and lemmas of RDC in AppendixA. In AppendixB,
we give the implementation details of our RONO. In Ap-
pendixC.1, supplementary experimental results are shown
and we give some insightful observations. In AppendixC.2,
we give an experiment-based parameter analysis.

A. Mathematical Proof of Robustness
In this section, we further supplement Section 3.4 with

clear and accessible proofs of Property 1, Property 2 and
Lemma 1. Since DNNs are noise tolerant in the early train-
ing stage [2], we only discuss the robustness of our RDC
during the latter training stage as the balanced parameter v
in RDC has dynamically increased to 1.

A.1. Mathematical Properties of RDC

The theoretical results [7,30] show that symmetric loss
is noise-tolerant under the symmetric label noise and asym-
metric noise. It is defined as:

K∑
i=1

L(f(x), i) = C, ∀x ∈ X , ∀f, (1)

where L(f(x), y) means the loss function which is calcu-
lated from model calculation results f(x) and labels y.

In the training stage after the memorization effect of the
neural networks [2] passed, our RDC can be simplified as:
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We can obviously get the upper and lower definite bound
of our RDC, defined as:

Lrdc ∈ [−(2e+ |α|), 0], (3)

where α ∈ [−e, e].

We define any sample belonging to any modality x ∈ X ,
then obtain common representation z = f(x), ∀f . For our
RDC, calculating Equation (1) yields:

K∑
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Lrdc(f(x), i) = −
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Due to the memorization effect of the DNNs, the common
representations are more similar to their real category cen-
ters. Thus, for noisy samples (i ≠ y∗ in Equation (4), where
y∗ means the really true label of the x.), we get:∑K

j e(cj≠i)
T z

K − 1
− e(ci)

T z + α > 0, (5)

The function of α is to separate the results within the ab-
solute value obtained from the clean samples and the noise
samples at 0.

And for clean samples (i = y∗ in Eq.(4)), we get∑K
j e(cj≠i)

T z

K − 1
− e(ci)

T z + α < 0. (6)

So we can remove the limit of absolute value:
K∑
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Lrdc(f(x), i)

=(

∑K
j e(cj≠y∗ )T z
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=(K − 1)Lrdc(f(x), y
∗) + C

(7)

where C ′, C is a constant, L(f(x), y∗) represents the loss
between z = f(x) and its real category center.

A.2. Symmetric Label Noise Tolerance of RDC

Assuming that our RDC is under symmetric or uniform
label noise. The definitions of RLrdc

(f) and RLrdc
(f∗) are

consistent with those of RLmae
(f) and RLmae

(f∗).
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Recall that for f(x), ∀x, ∀f ,

RLrdc
(f) = Ex,yLrdc(f(x), y) (8)

For uniform noise, we have, for any f ,
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Thus, for any f ,
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(f)) ≤ 0

(10)

because 1− η
K−1 > 0 and f∗ is a minimizer of RLrdc

. This
proves f∗ is also minimizer of risk under uniform noise.

A.3. Asymmetric Label Noise Tolerance of RDC

Assuming that our RDC is under asymmetric or class-
conditional label noise.

From Eq.(7), we could derive the following:∑
i≠y∗

Lrdc(f(x), i) = (K − 2)Lrdc(f(x), y
∗) + C (11)

It then yields the following derivations:
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where 1− ηy is the probability of a label being correct, and
the noise condition ηyi generally states that a sample x still
has the highest probability of being in the correct category,
though it has probability of ηyi being in an arbitrary noisy

(incorrect) category i ≠ y∗. Since f∗
η is the minimizer of

Rη
Lrdc

, we have Rη
Lrdc

(f∗
η ) − Rη

Lrdc
(f∗) ≤ 0, and hance

from Eq.(12) we have:
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∑
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(
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+ ηyi)(L(f∗
η (x), i)− L(f∗(x), i)) ≤ 0

(13)
According to the characteristics of our RDC, when α ≥

0, RLrdc
(f∗(x), i) = −(2e + α) for i ≠ y∗, which is

the infimum of our RDC. As 1−ηy

K−2 + ηyi > 0 in Eq.(13),
so RLrdc

(f∗
η (x), i) = −(2e + α) for i ≠ y∗, obtaining

RLrdc
(f∗(x), i) = RLrdc

(f∗
η (x), i) for i ≠ y∗.

From Eq.(11), we can obtain:∑
i≠y∗

Lrdc(f
∗
η (x), i)− Lrdc(f

∗(x), i)

=(K − 2)(Lrdc(f
∗
η (x), y

∗)− Lrdc(f
∗(x), y∗))

(14)

Therefore, we obtain Lrdc(f
∗
η (x), y

∗) = Lrdc(f
∗(x), y∗).

On this account, we obtain RLrdc
(f∗(x), i) =

RLrdc
(f∗

η (x), i) for i = 1, · · · ,K, which can also be
written as RLrdc

(f∗) = RLrdc
(f∗

η ), so we finally proof
when α ≥ 0, our RDC is asymmetric noise tolerance.

B. Implementation Details

Algorithm 1 Main optimization process of our RONO

Input: The training K-category multimodal data D =
{Mj}Mj=1, where Mj = {(xj

i , y
j
i )}Ni=1, maximal

epoch number Ne and learning rate lr.
1: Randomly initialize the center of each category in the

common space C = {c1, · · · , cK}.
2: for i = 1, 2, · · · , Ne do
3: Calculate the common representations fi(x

j
i ) for all

samples of the batch through the modality-specific
extractors {fi(Θi)}Mi=1, and use them for classifica-
tion through a common classifier g(Γ).

4: Normalize the C = {c1, · · · , cK}.
5: Calculate RDC, MG and CRC on the batch.
6: Update the network parameters {Θi}Mi=1, Γ and C by

minimizing the loss L with descending their stochas-
tic gradient:
Θi = Θi − lr · (∂Lrdc

∂Θi
+ βmg

∂Lmg

∂Θi
+ βcrc

∂Lcrc

∂Θi
),

Γ = Γ− lr · (βcrc
∂Lcrc

∂Γ ),
C = C − lr · (∂Lrdc

∂C ), for i, j = 1, · · · ,M .
7: end for

Output: Optimized network parameter {Θi}Mi=1.

In this work, we adopt the ResNet18 [9] as the backbone
network for 2D image feature extraction, dynamic graph
convolutional neural network (DGCNN) [25] for 3D point
cloud feature extraction and MeshNet [5] for mesh feature



ModelNet10 [26] ModelNet40 [26]

Img→Pnt Pnt→Img Img→Pnt Pnt→Img
0.1 0.2 0.4 0.1 0.2 0.4 0.1 0.2 0.4 0.1 0.2 0.4

CCA [12] 0.625 0.625 0.625 0.627 0.627 0.627 0.532 0.532 0.532 0.531 0.531 0.531
DCCA [1] 0.684 0.684 0.684 0.678 0.678 0.678 0.584 0.584 0.584 0.569 0.569 0.569

DCCAE [24] 0.703 0.703 0.703 0.693 0.693 0.693 0.593 0.593 0.593 0.572 0.572 0.572
DGCPN [29] 0.765 0.765 0.765 0.759 0.759 0.759 0.705 0.705 0.705 0.697 0.697 0.697

UCCH [14] 0.771 0.771 0.771 0.770 0.770 0.770 0.755 0.755 0.755 0.739 0.739 0.739
GMA [22] 0.649 0.634 0.619 0.617 0.615 0.599 0.512 0.510 0.498 0.503 0.498 0.486
MvDA [16] 0.586 0.539 0.483 0.550 0.500 0.455 0.421 0.402 0.367 0.409 0.391 0.370
AGAH [8] 0.821 0.805 0.756 0.827 0.801 0.743 0.817 0.778 0.778 0.800 0.779 0.761
DADH [3] 0.845 0.810 0.749 0.828 0.805 0.723 0.825 0.798 0.782 0.823 0.777 0.776

DAGNN [21] 0.814 0.756 0.672 0.807 0.738 0.671 0.840 0.822 0.763 0.837 0.810 0.751
ALGCN [20] 0.784 0.701 0.542 0.758 0.721 0.531 0.761 0.687 0.526 0.754 0.653 0.523
DSCMR [31] 0.851 0.838 0.675 0.825 0.810 0.661 0.831 0.811 0.656 0.819 0.804 0.651

MRL [13] 0.869 0.867 0.859 0.865 0.861 0.854 0.846 0.838 0.811 0.844 0.838 0.799
CLF [15] 0.856 0.803 0.741 0.840 0.798 0.743 0.855 0.820 0.757 0.852 0.813 0.758

CLF [15]+MAE [7] 0.848 0.794 0.771 0.841 0.791 0.754 0.837 0.811 0.761 0.832 0.798 0.763

Ours 0.885 0.875 0.863 0.875 0.860 0.857 0.861 0.852 0.827 0.854 0.845 0.822

Table 1. Performance comparison under the asymmetric noise rates of 0.1, 0.2 and 0.4 on the ModelNet10 and ModelNet40 datasets. The
highest mAPs are shown in bold and the second highest mAPs are underlined.

extraction. And all the features are projected as 512D com-
mon representations by two fully connected layers. We
adopt two fully connected layers as the common classifier
g(Γ) for our common representation classification. For our
overall framework optimization, we employ ADAM [18] as
our optimizer and the optimization process is shown in Al-
gorithm1.

For all datasets, the learning rate is initialized with
0.0001, batch size is set as 128 and temperature parame-
ter in MG is set as 1. We use a maximal epoch number of
100 for 3D MNIST [27] dataset and 400 for RGB-D ob-
ject [19], ModelNet10 [26] and ModelNet40 [26] datasets.
It is worth noting that for the optimal selection of the hyper-
parameters α, βmg and βcrc, we have used experiments in
AppendixC.2for analysis.

C. More Experimental Results
Due to space limitations, a portion of the experiments

we conducted could not be shown completely in the main
body of our paper, so they will be shown in this section
additionally.

C.1. More Comparative Experimental Results
and Analysis

We have added a total of four comparative experiments:
1) To fully demonstrate the effectiveness of RONO under
asymmetric noise, we have also conducted experiments on
ModelNet10 and ModelNet40 datasets under 0.1, 0.2 and

0.4 asymmetric label noise. 2) In addition, we have con-
ducted comparative experiments on four datasets we used
without any synthetic noise (part of the experimental results
have been shown in the main body of our paper). 3) We
have not only conducted 2D-3D cross-modal retrieval ex-
periments across three modal (i.e., Image, Mesh, and Point
cloud) on ModelNet40 dataset, but also on ModelNet10
dataset under 0, 0.2, 0.4, 0.6 and 0.8 label noise, by com-
paring RONO with state-of-the-art CLF [15]. 4) To verify
our RONO is superior in each domain, we conducted in-
domain retrieval experiments on ModelNet40 dataset with-
out synthetic noise, by comparing our RONO with sev-
eral in-domain methods, (i.e., MVCNN [23], GIFT [4], SP-
Net [28], TCL [10], VNN [11], DGCNN [25], DLAN [6],
SPH [17] and MeshNet [5]) which are taken from the im-
age, mesh and point cloud domains, respectively.

The experimental results are shown in Table1, Table2,
Table3and Table4, respectively, and we could draw the
following observations:

•Despite such complicated conditions as asymmetric
noise, our RONO remains superiority by virtue of
noise robustness.

•Our RONO shows superior even without the addition
of synthetic label noise in four datasets, further demon-
strating that well-annotated datasets also contain noise
impacting the performance of each non-robust method.

•Our RONO is not only superior in 2D-3D cross-modal



Methods 3D MNIST [27] RGB-D object [19] ModelNet10 [26] ModelNet40 [26]

Img→Pnt Pnt→Img Img→Pnt Pnt→Img Img→Pnt Pnt→Img Img→Pnt Pnt→Img

CCA [12] 0.415 0.415 0.135 0.133 0.625 0.627 0.532 0.531
DCCA [1] 0.595 0.593 0.211 0.215 0.684 0.678 0.584 0.569

DCCAE [24] 0.600 0.600 0.217 0.218 0.703 0.693 0.593 0.572
DGCPN [29] 0.792 0.783 0.138 0.142 0.765 0.759 0.705 0.697
UCCH [14] 0.791 0.790 0.309 0.307 0.771 0.770 0.755 0.739

GMA [22] 0.514 0.500 0.126 0.121 0.673 0.658 0.558 0.530
MvDA [16] 0.530 0.508 0.188 0.199 0.557 0.527 0.457 0.444
AGAH [8] 0.967 0.961 0.652 0.628 0.862 0.867 0.807 0.799
DADH [3] 0.971 0.969 0.772 0.761 0.889 0.884 0.836 0.824

DAGNN [21] 0.927 0.927 0.741 0.724 0.867 0.864 0.825 0.820
ALGCN [20] 0.908 0.900 0.717 0.691 0.815 0.799 0.785 0.791
DSCMR [31] 0.963 0.959 0.774 0.768 0.849 0.842 0.867 0.866

MRL [13] 0.963 0.945 0.723 0.719 0.887 0.871 0.848 0.843
CLF [15] 0.983 0.958 0.772 0.766 0.884 0.867 0.871 0.878

CLF [15]+MAE [7] 0.971 0.951 0.752 0.741 0.877 0.853 0.864 0.853

Ours 0.983 0.968 0.779 0.771 0.892 0.892 0.883 0.881

Table 2. Performance comparison in terms of mAP from image to point cloud (Img → Pnt) and from point cloud to image (Pnt→Img)
retrieval without noise on the 3D MNIST, RGB-D object, ModelNet10 and ModelNet40 datasets. The highest mAPs are shown in bold
and the second highest mAPs are underlined.

η
Qry Img Msh Pnt

Retrv Img Msh Pnt Img Msh Pnt Img Msh Pnt

0 CLF 0.903 0.907 0.895 0.889 0.916 0.900 0.887 0.893 0.885
Ours 0.913 0.906 0.898 0.896 0.919 0.904 0.895 0.903 0.892

0.2 CLF 0.829 0.848 0.847 0.841 0.871 0.866 0.838 0.865 0.873
Ours 0.871 0.889 0.877 0.890 0.912 0.905 0.872 0.899 0.895

0.4 CLF 0.762 0.790 0.788 0.786 0.810 0.795 0.772 0.785 0.825
Ours 0.866 0.888 0.878 0.883 0.911 0.900 0.865 0.897 0.895

0.6 CLF 0.572 0.572 0.633 0.567 0.583 0.617 0.606 0.578 0.749
Ours 0.840 0.857 0.850 0.868 0.901 0.892 0.854 0.888 0.892

0.8 CLF 0.315 0.218 0.237 0.258 0.304 0.246 0.258 0.212 0.449
Ours 0.826 0.859 0.849 0.858 0.898 0.887 0.842 0.880 0.885

Table 3. Performance comparison of CLF [15] and our RONO
under the symmetric noise rates of 0, 0.2, 0.4, 0.6 and 0.8 on tri-
modal (Image, Mesh, Point cloud) ModenNet10 dataset [26]. Un-
der each noise condition, the highest mAPs are shown in bold.

retrieval but also maintains its superiority in in-domain
retrieval by making full use of the mutual information
between modalities.

C.2. Parameter Analysis
To investigate the parameter sensitivity of our method,

we plot the average mAP scores of cross-modal retrieval
versus different hyper-parameters (i.e., α, βmg and βcrc)
on the test sets of 3D MNIST as shown in Figure1. From
Figure1a, one could see that our RONO could achieve sta-
ble superior performance when α is in the range of 0.1

Domain Method mAP

Img

MVCNN [23] 0.802
GIFT [4] 0.819

SPNet [28] 0.852
TCL [10] 0.880
VNN [11] 0.893

Ours 0.911

Pnt
DGCNN [25] 0.848

DLAN [6] 0.850
Ours 0.891

Msh
SPH [17] 0.333

MeshNet [5] 0.819
Ours 0.901

Table 4. Comparison with the state-of-the-art in-domain retrieval
methods on tri-modal ModelNet40 Dataset without noise. In each
domain, the highest mAPs are shown in bold.

to 0.5, thus indicating that our method is insensitive to α
in the range. From Figure1b, one could find that each
component of L contributes to the model which is consis-
tent with our ablation study. To be specific, our method
could achieve stable comparable performance when βmg is
in the range of 10 to 100 and βcrc is in the range of 0.1 to
10.
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Krueger, Emmanuel Bengio, Maxinder S Kanwal, Tegan
Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio,
et al. A closer look at memorization in deep networks. In
International conference on machine learning, pages 233–
242. PMLR, 2017.1

[3]Cong Bai, Chao Zeng, Qing Ma, Jinglin Zhang, and Shengy-
ong Chen. Deep adversarial discrete hashing for cross-modal
retrieval. In Proceedings of the 2020 international confer-
ence on multimedia retrieval, pages 525–531, 2020.3,4

[4]Song Bai, Xiang Bai, Zhichao Zhou, Zhaoxiang Zhang, and
Longin Jan Latecki. Gift: A real-time and scalable 3d shape
search engine. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5023–5032,
2016.3,4

[5]Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, and
Yue Gao. Meshnet: Mesh neural network for 3d shape rep-
resentation. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 33, pages 8279–8286, 2019.2,3,
4

[6]Takahiko Furuya and Ryutarou Ohbuchi. Deep aggregation
of local 3d geometric features for 3d model retrieval. In
BMVC, volume 7, page 8, 2016.3,4

[7]Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. Robust
loss functions under label noise for deep neural networks.
In Proceedings of the AAAI conference on artificial intelli-
gence, volume 31, 2017.1,3,4

[8]Wen Gu, Xiaoyan Gu, Jingzi Gu, Bo Li, Zhi Xiong, and
Weiping Wang. Adversary guided asymmetric hashing for
cross-modal retrieval. In Proceedings of the 2019 on inter-
national conference on multimedia retrieval, pages 159–167,
2019.3,4

[9]Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.2

[10]Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang
Bai. Triplet-center loss for multi-view 3d object retrieval. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1945–1954, 2018.3,4

[11]Xinwei He, Tengteng Huang, Song Bai, and Xiang Bai. View
n-gram network for 3d object retrieval. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 7515–7524, 2019.3,4

[12]Harold Hotelling. Relations between two sets of variates. In
Breakthroughs in statistics, pages 162–190. Springer, 1992.
3,4

[13]Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, and Jie Lin.
Learning cross-modal retrieval with noisy labels. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5403–5413, June
2021.3,4

[14]Peng Hu, Hongyuan Zhu, Jie Lin, Dezhong Peng, Yin-Ping
Zhao, and Xi Peng. Unsupervised contrastive cross-modal
hashing. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 2022.3,4

[15]Longlong Jing, Elahe Vahdani, Jiaxing Tan, and Yingli Tian.
Cross-modal center loss for 3d cross-modal retrieval. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3142–3151, 2021.3,4

[16]Meina Kan, Shiguang Shan, Haihong Zhang, Shihong Lao,
and Xilin Chen. Multi-view discriminant analysis. IEEE
transactions on pattern analysis and machine intelligence,
38(1):188–194, 2015.3,4

[17]Michael Kazhdan, Thomas Funkhouser, and Szymon
Rusinkiewicz. Rotation invariant spherical harmonic repre-
sentation of 3 d shape descriptors. In Symposium on geome-
try processing, volume 6, pages 156–164, 2003.3,4

[18]Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.3

[19]Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A
large-scale hierarchical multi-view rgb-d object dataset. In
2011 IEEE International Conference on Robotics and Au-
tomation, pages 1817–1824, 2011. doi: 10.1109/ICRA.
2011.5980382.3,4

[20]Shengsheng Qian, Dizhan Xue, Quan Fang, and Changsheng
Xu. Adaptive label-aware graph convolutional networks for
cross-modal retrieval. IEEE Transactions on Multimedia,
pages 1–1, 2021. doi: 10.1109/TMM.2021.3101642.3,
4

[21]Shengsheng Qian, Dizhan Xue, Huaiwen Zhang, Quan Fang,
and Changsheng Xu. Dual adversarial graph neural networks
for multi-label cross-modal retrieval. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages
2440–2448, 2021.3,4



[22]Abhishek Sharma, Abhishek Kumar, Hal Daume, and
David W Jacobs. Generalized multiview analysis: A dis-
criminative latent space. In 2012 IEEE conference on
computer vision and pattern recognition, pages 2160–2167.
IEEE, 2012.3,4

[23]Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3d shape recognition. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 945–953,
2015.3,4

[24]Weiran Wang, Raman Arora, Karen Livescu, and Jeff
Bilmes. On deep multi-view representation learning. In
International conference on machine learning, pages 1083–
1092. PMLR, 2015.3,4

[25]Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions
On Graphics (tog), 38(5):1–12, 2019.2,3,4

[26]Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1912–1920, 2015.3,4

[27]Xiaofan Xu, Alireza Dehghani, David Corrigan, Sam
Caulfield, and David Moloney. Convolutional neural net-
work for 3d object recognition using volumetric represen-
tation. In 2016 First International Workshop on Sensing,
Processing and Learning for Intelligent Machines (SPLINE),
pages 1–5, 2016. doi: 10.1109/SPLIM.2016.7528403.3,4

[28]Mohsen Yavartanoo, Eu Young Kim, and Kyoung Mu Lee.
Spnet: Deep 3d object classification and retrieval using stere-
ographic projection. In Asian conference on computer vision,
pages 691–706. Springer, 2018.3,4

[29]Jun Yu, Hao Zhou, Yibing Zhan, and Dacheng Tao. Deep
graph-neighbor coherence preserving network for unsuper-
vised cross-modal hashing. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages 4626–
4634, 2021.3,4

[30]Zhilu Zhang and Mert Sabuncu. Generalized cross entropy
loss for training deep neural networks with noisy labels. Ad-
vances in neural information processing systems, 31, 2018.
1

[31]Liangli Zhen, Peng Hu, Xu Wang, and Dezhong Peng.
Deep supervised cross-modal retrieval. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10394–10403, 2019.3,4


